Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from Qwen/Qwen3-0.6B-Base. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: Qwen3Model
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'car a runs at the speed of 35 km / hr & reaches its destination in 9 hr . car b runs at the speed of 43 km / h & reaches its destination in 10 h . what is the respective ratio of distances covered by car a & car b ?',
' ',
"'",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sentence_0 and sentence_1| sentence_0 | sentence_1 | |
|---|---|---|
| type | string | string |
| details |
|
|
| sentence_0 | sentence_1 |
|---|---|
What is known to cause pedal Botryomycosis |
A |
Two friends plan to walk along a 33-km trail, starting at opposite ends of the trail at the same time. If Friend P's rate is 20% faster than Friend Q's, how many kilometers will Friend P have walked when they pass each other? |
5 |
The average age of a husband and a wife is 23 years when they were married five years ago but now the average age of the husband, wife and child is 20 years(the child was born during the interval). What is the present age of the child? |
) |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1fp16: Truemulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss |
|---|---|---|
| 0.0298 | 500 | 2.7788 |
| 0.0595 | 1000 | 2.5217 |
| 0.0893 | 1500 | 2.5004 |
| 0.1190 | 2000 | 2.5451 |
| 0.1488 | 2500 | 2.5165 |
| 0.1785 | 3000 | 2.5384 |
| 0.2083 | 3500 | 2.4994 |
| 0.2380 | 4000 | 0.0 |
| 0.2678 | 4500 | 0.0 |
| 0.2975 | 5000 | 0.0 |
| 0.3273 | 5500 | 0.0 |
| 0.3571 | 6000 | 0.0 |
| 0.3868 | 6500 | 0.0 |
| 0.4166 | 7000 | 0.0 |
| 0.4463 | 7500 | 0.0 |
| 0.4761 | 8000 | 0.0 |
| 0.5058 | 8500 | 0.0 |
| 0.5356 | 9000 | 0.0 |
| 0.5653 | 9500 | 0.0 |
| 0.5951 | 10000 | 0.0 |
| 0.6249 | 10500 | 0.0 |
| 0.6546 | 11000 | 0.0 |
| 0.6844 | 11500 | 0.0 |
| 0.7141 | 12000 | 0.0 |
| 0.7439 | 12500 | 0.0 |
| 0.7736 | 13000 | 0.0 |
| 0.8034 | 13500 | 0.0 |
| 0.8331 | 14000 | 0.0 |
| 0.8629 | 14500 | 0.0 |
| 0.8926 | 15000 | 0.0 |
| 0.9224 | 15500 | 0.0 |
| 0.9522 | 16000 | 0.0 |
| 0.9819 | 16500 | 0.0 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Qwen/Qwen3-0.6B-Base