Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from Qwen/Qwen3-0.6B-Base. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: Qwen3Model
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"The ratio of an object's mass to its volume is its",
'density.',
'500 m',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sentence_0 and sentence_1| sentence_0 | sentence_1 | |
|---|---|---|
| type | string | string |
| details |
|
|
| sentence_0 | sentence_1 |
|---|---|
A balance can measure the weight of |
sugar |
The average monthly salary of 20 employees in an organisation is Rs. 1500. If the manager's salary is added, then the average salary increases by Rs. 100. What is the manager's monthly salary? |
Rs.3600 |
When a baby shakes a rattle, it makes a noise. Which form of energy was changed to sound energy? |
mechanical |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1fp16: Truemulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss |
|---|---|---|
| 0.0110 | 500 | 1.3593 |
| 0.0220 | 1000 | 0.8335 |
| 0.0331 | 1500 | 0.7774 |
| 0.0441 | 2000 | 0.7507 |
| 0.0551 | 2500 | 0.7108 |
| 0.0661 | 3000 | 0.6946 |
| 0.0772 | 3500 | 0.6644 |
| 0.0882 | 4000 | 0.621 |
| 0.0992 | 4500 | 0.6124 |
| 0.1102 | 5000 | 0.576 |
| 0.1212 | 5500 | 0.5787 |
| 0.1323 | 6000 | 0.5502 |
| 0.1433 | 6500 | 0.5653 |
| 0.1543 | 7000 | 0.5315 |
| 0.1653 | 7500 | 0.5198 |
| 0.1764 | 8000 | 0.5114 |
| 0.1874 | 8500 | 0.4775 |
| 0.1984 | 9000 | 0.4803 |
| 0.2094 | 9500 | 0.4876 |
| 0.2204 | 10000 | 0.4824 |
| 0.2315 | 10500 | 0.4587 |
| 0.2425 | 11000 | 0.4521 |
| 0.2535 | 11500 | 0.4565 |
| 0.2645 | 12000 | 0.448 |
| 0.2756 | 12500 | 0.4475 |
| 0.2866 | 13000 | 0.4313 |
| 0.2976 | 13500 | 0.4226 |
| 0.3086 | 14000 | 0.4079 |
| 0.3196 | 14500 | 0.3869 |
| 0.3307 | 15000 | 0.4001 |
| 0.3417 | 15500 | 0.3815 |
| 0.3527 | 16000 | 0.3769 |
| 0.3637 | 16500 | 0.3526 |
| 0.3748 | 17000 | 0.3839 |
| 0.3858 | 17500 | 0.3647 |
| 0.3968 | 18000 | 0.3616 |
| 0.4078 | 18500 | 0.3615 |
| 0.4188 | 19000 | 0.3592 |
| 0.4299 | 19500 | 0.322 |
| 0.4409 | 20000 | 0.3352 |
| 0.4519 | 20500 | 0.3228 |
| 0.4629 | 21000 | 0.3213 |
| 0.4740 | 21500 | 0.3129 |
| 0.4850 | 22000 | 0.3086 |
| 0.4960 | 22500 | 0.3011 |
| 0.5070 | 23000 | 0.3112 |
| 0.5180 | 23500 | 0.308 |
| 0.5291 | 24000 | 0.3002 |
| 0.5401 | 24500 | 0.2805 |
| 0.5511 | 25000 | 0.2809 |
| 0.5621 | 25500 | 0.2666 |
| 0.5732 | 26000 | 0.2772 |
| 0.5842 | 26500 | 0.2783 |
| 0.5952 | 27000 | 0.2704 |
| 0.6062 | 27500 | 0.2696 |
| 0.6172 | 28000 | 0.2667 |
| 0.6283 | 28500 | 0.2561 |
| 0.6393 | 29000 | 0.2546 |
| 0.6503 | 29500 | 0.2491 |
| 0.6613 | 30000 | 0.2405 |
| 0.6724 | 30500 | 0.2376 |
| 0.6834 | 31000 | 0.2236 |
| 0.6944 | 31500 | 0.246 |
| 0.7054 | 32000 | 0.2418 |
| 0.7164 | 32500 | 0.2271 |
| 0.7275 | 33000 | 0.2308 |
| 0.7385 | 33500 | 0.2162 |
| 0.7495 | 34000 | 0.2135 |
| 0.7605 | 34500 | 0.2157 |
| 0.7716 | 35000 | 0.2177 |
| 0.7826 | 35500 | 0.2242 |
| 0.7936 | 36000 | 0.22 |
| 0.8046 | 36500 | 0.2026 |
| 0.8156 | 37000 | 0.1988 |
| 0.8267 | 37500 | 0.1845 |
| 0.8377 | 38000 | 0.1955 |
| 0.8487 | 38500 | 0.2115 |
| 0.8597 | 39000 | 0.2026 |
| 0.8708 | 39500 | 0.1861 |
| 0.8818 | 40000 | 0.1882 |
| 0.8928 | 40500 | 0.1861 |
| 0.9038 | 41000 | 0.1921 |
| 0.9148 | 41500 | 0.1778 |
| 0.9259 | 42000 | 0.1779 |
| 0.9369 | 42500 | 0.1782 |
| 0.9479 | 43000 | 0.1748 |
| 0.9589 | 43500 | 0.168 |
| 0.9700 | 44000 | 0.1717 |
| 0.9810 | 44500 | 0.1699 |
| 0.9920 | 45000 | 0.1697 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Qwen/Qwen3-0.6B-Base