Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| forward |
|
| right |
|
| left |
|
| backward |
|
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cahlen/setfit-navigation-instructions")
# Run inference
preds = model("Move to the right")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 2 | 5.0 | 12 |
| Label | Training Sample Count |
|---|---|
| right | 22 |
| left | 21 |
| forward | 11 |
| backward | 13 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0024 | 1 | 0.1239 | - |
| 0.1220 | 50 | 0.1257 | - |
| 0.2439 | 100 | 0.0215 | - |
| 0.3659 | 150 | 0.0047 | - |
| 0.4878 | 200 | 0.0025 | - |
| 0.6098 | 250 | 0.0017 | - |
| 0.7317 | 300 | 0.0014 | - |
| 0.8537 | 350 | 0.0011 | - |
| 0.9756 | 400 | 0.0013 | - |
| 1.0 | 410 | - | 0.0182 |
| 1.0976 | 450 | 0.0009 | - |
| 1.2195 | 500 | 0.0008 | - |
| 1.3415 | 550 | 0.0007 | - |
| 1.4634 | 600 | 0.0007 | - |
| 1.5854 | 650 | 0.0006 | - |
| 1.7073 | 700 | 0.0007 | - |
| 1.8293 | 750 | 0.0006 | - |
| 1.9512 | 800 | 0.0006 | - |
| 2.0 | 820 | - | 0.0227 |
| 2.0732 | 850 | 0.0005 | - |
| 2.1951 | 900 | 0.0005 | - |
| 2.3171 | 950 | 0.0006 | - |
| 2.4390 | 1000 | 0.0005 | - |
| 2.5610 | 1050 | 0.0006 | - |
| 2.6829 | 1100 | 0.0005 | - |
| 2.8049 | 1150 | 0.0005 | - |
| 2.9268 | 1200 | 0.0004 | - |
| 3.0 | 1230 | - | 0.0236 |
| 3.0488 | 1250 | 0.0004 | - |
| 3.1707 | 1300 | 0.0004 | - |
| 3.2927 | 1350 | 0.0004 | - |
| 3.4146 | 1400 | 0.0005 | - |
| 3.5366 | 1450 | 0.0004 | - |
| 3.6585 | 1500 | 0.0004 | - |
| 3.7805 | 1550 | 0.0004 | - |
| 3.9024 | 1600 | 0.0004 | - |
| 4.0 | 1640 | - | 0.0240 |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}