Datasets:
The dataset viewer is not available for this dataset.
Error code: ConfigNamesError
Exception: ReadTimeout
Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 7e2e2f41-997f-499b-b96d-8410d3845c5b)')
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
).get_module()
^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 632, in get_module
data_files = DataFilesDict.from_patterns(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 689, in from_patterns
else DataFilesList.from_patterns(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 592, in from_patterns
origin_metadata = _get_origin_metadata(data_files, download_config=download_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 506, in _get_origin_metadata
return thread_map(
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map
return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map
return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/tqdm/std.py", line 1169, in __iter__
for obj in iterable:
^^^^^^^^
File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 619, in result_iterator
yield _result_or_cancel(fs.pop())
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 317, in _result_or_cancel
return fut.result(timeout)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 456, in result
return self.__get_result()
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 401, in __get_result
raise self._exception
File "/usr/local/lib/python3.12/concurrent/futures/thread.py", line 59, in run
result = self.fn(*self.args, **self.kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 485, in _get_single_origin_metadata
resolved_path = fs.resolve_path(data_file)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path
repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist
self._api.repo_info(
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2816, in repo_info
return method(
^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2673, in dataset_info
r = get_session().get(path, headers=headers, timeout=timeout, params=params)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 602, in get
return self.request("GET", url, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 589, in request
resp = self.send(prep, **send_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 703, in send
r = adapter.send(request, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 96, in send
return super().send(request, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/adapters.py", line 690, in send
raise ReadTimeout(e, request=request)
requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 7e2e2f41-997f-499b-b96d-8410d3845c5b)')Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
VK-LSVD: Large Short-Video Dataset
VK-LSVD is the largest open industrial short-video recommendation dataset with real-world interactions:
- 40B unique user–item interactions with rich feedback (
timespent,like,dislike,share,bookmark,click_on_author,open_comments) and context (place,platform,agent); - 10M users (with
age,gender,geo); - 20M short videos (with
duration,author_id, contentembedding); - Global Temporal Ordering across six consecutive months of user interactions.
Why short video? Users often watch dozens of clips per session, producing dense, time-ordered signals well suited for modeling. Unlike music, podcasts, or long-form video, which are often consumed in the background, short videos are foreground by design. They also do not exhibit repeat exposure. Even without explicit feedback, signals such as skips, completions, and replays yield strong implicit labels. Single-item feeds also simplify attribution and reduce confounding compared with multi-item layouts.
Note: The test set will be released after the upcoming challenge.
📊 Basic Statistics • 🧱 Data Description • ⚡ Quick Start • 🧩 Configurable Subsets
Basic Statistics
- Users 10,000,000
- Items 19,627,601
- Unique interactions 40,774,024,903
- Interactions density 0.0208%
- Total watch time: 858,160,100,084 s
- Likes: 1,171,423,458
- Dislikes: 11,860,138
- Shares: 262,734,328
- Bookmarks: 40,124,463
- Clicks on author: 84,632,666
- Comment opens: 481,251,593
Data Description
Privacy-preserving taxonomy — all categorical metadata (user_id, geo, item_id, author_id, place, platform, agent) is anonymized into stable integer IDs (consistent across splits; no reverse mapping provided).
Interactions
interactions
Each row is one observation (a short video shown to a user) with feedback and context. There are no repeated exposures of the same user–item pair.
Global Temporal Split (GTS): train / validation / test preserve time order — train on the past, validate/test on the future.
Chronology: Files are organized by weeks (e.g., week_XX.parquet); rows within each file are in increasing timestamp order.
| Field | Type | Description |
|---|---|---|
user_id |
uint32 | User identifier |
item_id |
uint32 | Video identifier |
place |
uint8 | Place: feed/search/group/… (24 ids) |
platform |
uint8 | Platform: Android/Web/TV/… (11 ids) |
agent |
uint8 | Agent/client: browser/app (29 ids) |
timespent |
uint8 | Watch time (0–255 seconds) |
like |
boolean | User liked the video |
dislike |
boolean | User disliked the video |
share |
boolean | User shared the video |
bookmark |
boolean | User bookmarked the video |
click_on_author |
boolean | User opened author page |
open_comments |
boolean | User opened the comments section |
Users metadata
| Field | Type | Description |
|---|---|---|
user_id |
uint32 | User identifier |
age |
uint8 | Age (18-70 years) |
gender |
uint8 | Gender |
geo |
uint8 | Most frequent user location (80 ids) |
train_interactions_rank |
uint32 | Popularity rank for sampling (lower = more interactions) |
Items metadata
| Field | Type | Description |
|---|---|---|
item_id |
uint32 | Video identifier |
author_id |
uint32 | Author identifier |
duration |
uint8 | Video duration (seconds) |
train_interactions_rank |
uint32 | Popularity rank for sampling (lower = more interactions) |
Embeddings: variable width
Embeddings are trained strictly on content (video/description/audio, etc.) — no collaborative signal mixed in.
Components are ordered: the dot product of the first n components approximates the cosine similarity of the original production embeddings.
This lets researchers pick any dimensionality (1…64) to trade quality for speed and memory.
| Field | Type | Description |
|---|---|---|
item_id |
uint32 | Video identifier |
embedding |
float16[64] | Item content embedding with ordered components |
Quick Start
Load a small subsample
from huggingface_hub import hf_hub_download
import polars as pl
import numpy as np
subsample_name = 'up0.001_ip0.001'
content_embedding_size = 32
train_interactions_files = [f'subsamples/{subsample_name}/train/week_{i:02}.parquet'
for i in range(25)]
val_interactions_file = [f'subsamples/{subsample_name}/validation/week_25.parquet']
metadata_files = ['metadata/users_metadata.parquet',
'metadata/items_metadata.parquet',
'metadata/item_embeddings.npz']
for file in (train_interactions_files +
val_interactions_file +
metadata_files):
hf_hub_download(
repo_id='deepvk/VK-LSVD', repo_type='dataset',
filename=file, local_dir='VK-LSVD'
)
train_interactions = pl.concat([pl.scan_parquet(f'VK-LSVD/{file}')
for file in train_interactions_files])
train_interactions = train_interactions.collect(engine='streaming')
val_interactions = pl.read_parquet(f'VK-LSVD/{val_interactions_file[0]}')
train_users = train_interactions.select('user_id').unique()
train_items = train_interactions.select('item_id').unique()
item_ids = np.load('VK-LSVD/metadata/item_embeddings.npz')['item_id']
item_embeddings = np.load('VK-LSVD/metadata/item_embeddings.npz')['embedding']
mask = np.isin(item_ids, train_items.to_numpy())
item_ids = item_ids[mask]
item_embeddings = item_embeddings[mask]
item_embeddings = item_embeddings[:, :content_embedding_size]
users_metadata = pl.read_parquet('VK-LSVD/metadata/users_metadata.parquet')
items_metadata = pl.read_parquet('VK-LSVD/metadata/items_metadata.parquet')
users_metadata = users_metadata.join(train_users, on='user_id')
items_metadata = items_metadata.join(train_items, on='item_id')
items_metadata = items_metadata.join(pl.DataFrame({'item_id': item_ids,
'embedding': item_embeddings}),
on='item_id')
Configurable Subsets
We provide several ready-made slices and simple utilities to compose your own subset that matches your task, data budget, and hardware.
You can control density via popularity quantiles (train_interactions_rank), draw random users,
or pick specific time windows — while preserving the Global Temporal Split.
Representative subsamples are provided for quick experiments:
| Subset | Users | Items | Interactions | Density |
|---|---|---|---|---|
whole |
10,000,000 | 19,627,601 | 40,774,024,903 | 0.0208% |
ur0.1 |
1,000,000 | 18,701,510 | 4,066,457,259 | 0.0217% |
ur0.01 |
100,000 | 12,467,302 | 407,854,360 | 0.0327% |
ur0.01_ir0.01 |
90,178 | 125,018 | 4,044,900 | 0.0359% |
up0.01_ir0.01 |
100000 | 171106 | 38,404,921 | 0.2245% |
ur0.01_ip0.01 |
99,893 | 196,277 | 191,625,941 | 0.9774% |
up0.01_ip0.01 |
100,000 | 196,277 | 1,417,906,344 | 7.2240% |
up0.001_ip0.001 |
10,000 | 19,628 | 47,976,280 | 24.4428% |
up-0.9_ip-0.9 |
8,939,432 | 17,654,817 | 2,861,937,212 | 0.0018% |
urX— X fraction of random users (e.g.,ur0.01= 1% of users).ipX— X fraction of popular items (bytrain_interactions_rank)- Negative X denotes the least-popular fraction (e.g.,
−0.9→ bottom 90%).
For example, to get ur0.01_ip0.01 (1% of random users, 1% of most popular items) use the snippet below.
import polars as pl
def get_sample(entries: pl.DataFrame, split_column: str, fraction: float) -> pl.DataFrame:
if fraction >= 0:
entries = entries.filter(pl.col(split_column) <=
pl.col(split_column).quantile(fraction,
interpolation='midpoint'))
else:
entries = entries.filter(pl.col(split_column) >=
pl.col(split_column).quantile(1 + fraction,
interpolation='midpoint'))
return entries
users = pl.scan_parquet('VK-LSVD/metadata/users_metadata.parquet')
users_sample = get_sample(users, 'user_id', 0.01).select(['user_id'])
items = pl.scan_parquet('VK-LSVD/metadata/items_metadata.parquet')
items_sample = get_sample(items, 'train_interactions_rank', 0.01).select(['item_id'])
interactions = pl.scan_parquet('VK-LSVD/interactions/validation/week_25.parquet')
interactions = interactions.join(users_sample, on='user_id', maintain_order='left')
interactions = interactions.join(items_sample, on='item_id', maintain_order='left')
interactions_sample = interactions.collect(engine='streaming')
To get up-0.9_ip-0.9 (90% of least popular users, 90% of least popular items) replace users and items sampling lines with
users_sample = get_sample(users, 'train_interactions_rank', -0.9).select(['user_id'])
items_sample = get_sample(items, 'train_interactions_rank', -0.9).select(['item_id'])
- Downloads last month
- 3,372