Dataset Viewer
Auto-converted to Parquet Duplicate
text
stringlengths
11
29
PermanentCrop_1619.jpg
PermanentCrop_1278.jpg
PermanentCrop_876.jpg
PermanentCrop_404.jpg
PermanentCrop_372.jpg
PermanentCrop_713.jpg
PermanentCrop_1456.jpg
PermanentCrop_1824.jpg
PermanentCrop_1790.jpg
PermanentCrop_2122.jpg
PermanentCrop_1741.jpg
PermanentCrop_1320.jpg
PermanentCrop_1487.jpg
PermanentCrop_1665.jpg
PermanentCrop_2311.jpg
PermanentCrop_478.jpg
PermanentCrop_1900.jpg
PermanentCrop_1572.jpg
PermanentCrop_2467.jpg
PermanentCrop_1113.jpg
PermanentCrop_2006.jpg
PermanentCrop_983.jpg
PermanentCrop_2298.jpg
PermanentCrop_190.jpg
PermanentCrop_141.jpg
PermanentCrop_287.jpg
PermanentCrop_1575.jpg
PermanentCrop_2460.jpg
PermanentCrop_1114.jpg
PermanentCrop_2001.jpg
PermanentCrop_768.jpg
PermanentCrop_197.jpg
PermanentCrop_630.jpg
PermanentCrop_64.jpg
PermanentCrop_146.jpg
PermanentCrop_2188.jpg
PermanentCrop_527.jpg
PermanentCrop_403.jpg
PermanentCrop_871.jpg
PermanentCrop_714.jpg
PermanentCrop_1168.jpg
PermanentCrop_1823.jpg
PermanentCrop_1451.jpg
PermanentCrop_1797.jpg
PermanentCrop_2125.jpg
PermanentCrop_1746.jpg
PermanentCrop_2232.jpg
PermanentCrop_929.jpg
PermanentCrop_803.jpg
PermanentCrop_2318.jpg
PermanentCrop_307.jpg
PermanentCrop_1909.jpg
PermanentCrop_1384.jpg
PermanentCrop_1423.jpg
PermanentCrop_2291.jpg
PermanentCrop_1042.jpg
PermanentCrop_2157.jpg
PermanentCrop_2186.jpg
PermanentCrop_2240.jpg
PermanentCrop_1355.jpg
PermanentCrop_1880.jpg
PermanentCrop_7.jpg
PermanentCrop_1610.jpg
PermanentCrop_1271.jpg
PermanentCrop_1975.jpg
PermanentCrop_2412.jpg
PermanentCrop_1166.jpg
PermanentCrop_2073.jpg
PermanentCrop_223.jpg
PermanentCrop_584.jpg
PermanentCrop_16.jpg
PermanentCrop_1748.jpg
PermanentCrop_693.jpg
PermanentCrop_1329.jpg
PermanentCrop_555.jpg
PermanentCrop_1617.jpg
PermanentCrop_2363.jpg
PermanentCrop_878.jpg
PermanentCrop_1276.jpg
PermanentCrop_1972.jpg
PermanentCrop_2415.jpg
PermanentCrop_1161.jpg
PermanentCrop_2074.jpg
PermanentCrop_224.jpg
PermanentCrop_1458.jpg
PermanentCrop_645.jpg
PermanentCrop_11.jpg
PermanentCrop_133.jpg
PermanentCrop_1489.jpg
PermanentCrop_804.jpg
PermanentCrop_476.jpg
PermanentCrop_300.jpg
PermanentCrop_761.jpg
PermanentCrop_2008.jpg
PermanentCrop_1424.jpg
PermanentCrop_1856.jpg
PermanentCrop_258.jpg
PermanentCrop_2296.jpg
PermanentCrop_1045.jpg
PermanentCrop_2150.jpg
End of preview. Expand in Data Studio

This is an export of Google's AlphaEarth embeddings which align with the EuroSAT Sentinel-2 patches from roughly sometime during 2018.

The code to reproduce the dataset download is below (requires a GEE project and login):

import os
import argparse
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from functools import partial
import shutil

import ee
import xarray as xr
import rioxarray as rio
from torchgeo.datasets import EuroSAT
from tqdm import tqdm


def quantize_aef(image):
    """quantize float64 -> uint8"""
    power = 2.0
    scale = 127.5
    min_value = -127
    max_value = 127

    sat = image.abs().pow(ee.Number(1.0).divide(power)).multiply(image.signum())
    snapped = sat.multiply(scale).round()
    return snapped.clamp(min_value, max_value).add(ee.Number(127)).uint8()


def download_aef(filepath, output, year, collection):
    try:
        raster = rio.open_rasterio(filepath)
        raster = raster.rio.reproject("EPSG:4326")
        bounds = raster.rio.bounds()  # must by in EPSG:4326
        startDate = ee.Date.fromYMD(year, 1, 1)
        endDate = startDate.advance(1, "year")
        geometry = ee.Geometry.BBox(*bounds)
        image = (
            collection.filter(ee.Filter.date(startDate, endDate))
            .filter(ee.Filter.bounds(geometry))
            .first()
        )
        ds = xr.open_dataset(
            quantize_aef(image),
            engine="ee",
            geometry=bounds,
            projection=image.select(0).projection(),
        )
        ds = ds.isel(time=0)
        ds = ds.rename({"X": "x", "Y": "y"})
        ds = ds.to_array(dim="band").transpose("band", "y", "x")
        output_path = os.path.join(output, filepath.stem + ".tif")
        ds.rio.to_raster(output_path, driver="COG", compress="deflate", dtype="uint8")
    except Exception as e:
        return filepath, str(e)
    return filepath, None


def main(args):
    ee.Authenticate()
    ee.Initialize(
        project=args.project,
        opt_url="https://earthengine-highvolume.googleapis.com",
    )
    ee.data.setWorkloadTag(args.workload_tag)
    collection = ee.ImageCollection("GOOGLE/SATELLITE_EMBEDDING/V1/ANNUAL")

    filepaths = []
    for split in ["train", "val", "test"]:
        ds = EuroSAT(root=args.root, split=split, download=True, checksum=True)
        filepaths.extend([Path(img) for img, _ in ds.imgs])

    with open("errors.csv", "w") as f:
        f.write("filepath,error\n")

    os.makedirs(args.output, exist_ok=True)

    with ThreadPoolExecutor(max_workers=args.num_workers) as executor:
        func = partial(
            download_aef, output=args.output, year=args.year, collection=collection
        )
        futures = [executor.submit(func, filepath) for filepath in filepaths]

        for future in tqdm(
            concurrent.futures.as_completed(futures), total=len(filepaths)
        ):
            filepath, error = future.result()
            if error:
                with open("errors.csv", "a") as f:
                    f.write(f"{filepath},{error}\n")

    # Reorganize images into folders (optional)
    images = list(Path(args.output).glob("*.tif"))
    print(len(images))
    for image in tqdm(images):
        folder = image.parent / image.stem.split("_")[0]
        folder.mkdir(parents=True, exist_ok=True)
        shutil.move(image, folder / image.name)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--year", type=int, default=2018)
    parser.add_argument("--output", type=str, default="eurosat-aef")
    parser.add_argument("--num_workers", type=int, default=32)
    parser.add_argument("--root", type=str, default="data")
    parser.add_argument("--project", type=str)
    parser.add_argument("--workload_tag", type=str, default="aef-eurosat")
    args = parser.parse_args()
    main(args)
Downloads last month
68