Dataset Viewer
Auto-converted to Parquet Duplicate
question
stringlengths
53
5.78k
answer
stringlengths
1
27.2k
source_dataset
stringclasses
34 values
metadata_json
stringlengths
74
27.4k
Given two strings representing a ransom note and a magazine, return True if you can construct the ransom note using the letters in the magazine, and False otherwise. Each letter in the magazine string can only be used once in your ransom note. Ransom note: sxycukhcefujckreysvchxmeephirqoadkynetenkzjscfqwncrszfjjulftwipzvmwzpedwdmwxhoia Magazine: eeahvhzlknpthgyrmjckhuhrcxewmoguwpfqfbzdowziixybvbavwyyzahghslqeritrqjtuqtmehyoxzwrjexswserkfcvdemaezpdcwyxlyoaxarsiuzcxskpznjglypkulmflshdicdgfmaufodvdhxofywdfloc
False
ransom_note
{"difficulty": {"magazine_length": [100, 500], "note_length": [50, 100]}, "magazine": "eeahvhzlknpthgyrmjckhuhrcxewmoguwpfqfbzdowziixybvbavwyyzahghslqeritrqjtuqtmehyoxzwrjexswserkfcvdemaezpdcwyxlyoaxarsiuzcxskpznjglypkulmflshdicdgfmaufodvdhxofywdfloc", "magazine_length": 163, "note_length": 80, "ransom_note": "sxycukhcefujckreysvchxmeephirqoadkynetenkzjscfqwncrszfjjulftwipzvmwzpedwdmwxhoia", "solution": false, "solvable": false, "source_dataset": "ransom_note", "source_index": 0}
Your task is to convert a number between two different bases. If the target base is > 10, use lowercase letters a-z for digits above 9. Now, convert the base-15 number d7c5 to hexadecimal
b243
base_conversion
{"decimal_value": 45635, "difficulty": {"base": [9, 18], "value": [10000, 100000]}, "source_base": 15, "source_dataset": "base_conversion", "source_index": 1, "source_repr": "d7c5", "target_base": 16, "target_repr": "b243"}
How many times does the letter "g" appear in the text: "France means to be the trusty defender Well said exclaimed Mr Smith How is it he asked turning to the Russian ambassador that you Russians are not content with your vast empire the most extensive in the world stretching from the banks of"?
2
letter_counting
{"difficulty": {"words": [25, 50]}, "source_dataset": "letter_counting", "source_index": 2, "span": ["France", "means", "to", "be", "the", "trusty", "defender", "Well", "said", "exclaimed", "Mr", "Smith", "How", "is", "it", "he", "asked", "turning", "to", "the", "Russian", "ambassador", "that", "you", "Russians", "are", "not", "content", "with", "your", "vast", "empire", "the", "most", "extensive", "in", "the", "world", "stretching", "from", "the", "banks", "of"], "span_length": 43, "target_letter": "g"}
Please provide a coloring for this graph such that every vertex is not connected to a vertex of the same color. The graph has these properties: Vertices: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Edges: [(0, 5), (0, 7), (1, 9), (2, 5), (2, 9), (3, 9), (7, 10), (8, 9)] Possible colors: [1, 2, 3, 4] Return your solution as a JSON map of vertices to colors. (For example: {"0": 1, "1": 2, "2": 3}.)
null
graph_color
{"difficulty": {"num_colors": 4, "num_vertices": [10, 20]}, "num_vertices": 11, "possible_answer": {"0": 1, "1": 1, "2": 1, "3": 1, "4": 1, "5": 2, "6": 1, "7": 2, "8": 1, "9": 2, "10": 1}, "puzzle": {"color_options": [1, 2, 3, 4], "edges": [[0, 5], [0, 7], [1, 9], [2, 5], [2, 9], [3, 9], [7, 10], [8, 9]], "num_colors": 4, "vertices": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}, "source_dataset": "graph_color", "source_index": 3}
There are nine different blocks [A] [B] [C] {A} {B} {C} (A) (B) (C) 1. One [A], one [B], and one [C] can be combined to form one {A}. 2. One [A] and one [B] can be combined to form one {C}. 3. One [B] and one [C] can be combined to form one {B}. 4. Two [C] can be combined to form one {C}. 5. One {A} and one {C} can be combined to form one (A) and one (B). 6. Two {B} can be combined to form one (C). Given a certain number of initial blocks, your job is to cycle through the rules 1-6 above, synthesizing new blocks until no more rules can be applied, or until a state (counts of each block type) is repeated. In the case a state is repeated the answer is the state before the repetition! The output should be the count of each block type after the rules have been applied in the order they are listed above. For example 1 0 3 0 2 0 0 0 1 means that you have 1 [A] 0 [B] 3 [C] 0 {A} 2 {B} 0 {C} 0 (A) 0 (B) 1 (C). Now, you have 66 [A], 70 [B], and 62 [C] blocks. Provide the count of each block type after applying the above rules. Note: Apply the rules at most 1000 times. If the rules cannot be applied anymore, or if you have reached the maximum number of iterations, stop and provide the current counts.
0 4 0 58 0 0 4 4 0
string_synthesis
{"difficulty": {"initial_blocks": [50, 100]}, "initial_blocks": [66, 70, 62], "solution": [0, 4, 0, 58, 0, 0, 4, 4, 0], "source_dataset": "string_synthesis", "source_index": 4, "states": [[66, 70, 62, 0, 0, 0, 0, 0, 0], [65, 69, 61, 1, 0, 0, 0, 0, 0], [64, 68, 60, 2, 0, 0, 0, 0, 0], [63, 67, 59, 3, 0, 0, 0, 0, 0], [62, 66, 58, 4, 0, 0, 0, 0, 0], [61, 65, 57, 5, 0, 0, 0, 0, 0], [60, 64, 56, 6, 0, 0, 0, 0, 0], [59, 63, 55, 7, 0, 0, 0, 0, 0], [58, 62, 54, 8, 0, 0, 0, 0, 0], [57, 61, 53, 9, 0, 0, 0, 0, 0], [56, 60, 52, 10, 0, 0, 0, 0, 0], [55, 59, 51, 11, 0, 0, 0, 0, 0], [54, 58, 50, 12, 0, 0, 0, 0, 0], [53, 57, 49, 13, 0, 0, 0, 0, 0], [52, 56, 48, 14, 0, 0, 0, 0, 0], [51, 55, 47, 15, 0, 0, 0, 0, 0], [50, 54, 46, 16, 0, 0, 0, 0, 0], [49, 53, 45, 17, 0, 0, 0, 0, 0], [48, 52, 44, 18, 0, 0, 0, 0, 0], [47, 51, 43, 19, 0, 0, 0, 0, 0], [46, 50, 42, 20, 0, 0, 0, 0, 0], [45, 49, 41, 21, 0, 0, 0, 0, 0], [44, 48, 40, 22, 0, 0, 0, 0, 0], [43, 47, 39, 23, 0, 0, 0, 0, 0], [42, 46, 38, 24, 0, 0, 0, 0, 0], [41, 45, 37, 25, 0, 0, 0, 0, 0], [40, 44, 36, 26, 0, 0, 0, 0, 0], [39, 43, 35, 27, 0, 0, 0, 0, 0], [38, 42, 34, 28, 0, 0, 0, 0, 0], [37, 41, 33, 29, 0, 0, 0, 0, 0], [36, 40, 32, 30, 0, 0, 0, 0, 0], [35, 39, 31, 31, 0, 0, 0, 0, 0], [34, 38, 30, 32, 0, 0, 0, 0, 0], [33, 37, 29, 33, 0, 0, 0, 0, 0], [32, 36, 28, 34, 0, 0, 0, 0, 0], [31, 35, 27, 35, 0, 0, 0, 0, 0], [30, 34, 26, 36, 0, 0, 0, 0, 0], [29, 33, 25, 37, 0, 0, 0, 0, 0], [28, 32, 24, 38, 0, 0, 0, 0, 0], [27, 31, 23, 39, 0, 0, 0, 0, 0], [26, 30, 22, 40, 0, 0, 0, 0, 0], [25, 29, 21, 41, 0, 0, 0, 0, 0], [24, 28, 20, 42, 0, 0, 0, 0, 0], [23, 27, 19, 43, 0, 0, 0, 0, 0], [22, 26, 18, 44, 0, 0, 0, 0, 0], [21, 25, 17, 45, 0, 0, 0, 0, 0], [20, 24, 16, 46, 0, 0, 0, 0, 0], [19, 23, 15, 47, 0, 0, 0, 0, 0], [18, 22, 14, 48, 0, 0, 0, 0, 0], [17, 21, 13, 49, 0, 0, 0, 0, 0], [16, 20, 12, 50, 0, 0, 0, 0, 0], [15, 19, 11, 51, 0, 0, 0, 0, 0], [14, 18, 10, 52, 0, 0, 0, 0, 0], [13, 17, 9, 53, 0, 0, 0, 0, 0], [12, 16, 8, 54, 0, 0, 0, 0, 0], [11, 15, 7, 55, 0, 0, 0, 0, 0], [10, 14, 6, 56, 0, 0, 0, 0, 0], [9, 13, 5, 57, 0, 0, 0, 0, 0], [8, 12, 4, 58, 0, 0, 0, 0, 0], [7, 11, 3, 59, 0, 0, 0, 0, 0], [6, 10, 2, 60, 0, 0, 0, 0, 0], [5, 9, 1, 61, 0, 0, 0, 0, 0], [4, 8, 0, 62, 0, 0, 0, 0, 0], [3, 7, 0, 62, 0, 1, 0, 0, 0], [2, 6, 0, 62, 0, 2, 0, 0, 0], [1, 5, 0, 62, 0, 3, 0, 0, 0], [0, 4, 0, 62, 0, 4, 0, 0, 0], [0, 4, 0, 61, 0, 3, 1, 1, 0], [0, 4, 0, 60, 0, 2, 2, 2, 0], [0, 4, 0, 59, 0, 1, 3, 3, 0], [0, 4, 0, 58, 0, 0, 4, 4, 0]]}
Two strings are isomorphic if the characters in one string can be replaced to get the second string. All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character, but a character may map to itself. Return True if the following two strings are isomorphic, or False otherwise: zcscpcllfsikbvqznbsjejxjdjpxkzgbxocijuywvprgminzgrguvtmkdtoyoly znintnwwbiefscozhsiugujuvutjfzlsjaneuxrkctylpehzlylxcdpfvdarawr
True
isomorphic_strings
{"difficulty": {"string_length": [50, 100]}, "solution": true, "solvable": true, "source_dataset": "isomorphic_strings", "source_index": 5, "string_length": 64, "words": ["zcscpcllfsikbvqznbsjejxjdjpxkzgbxocijuywvprgminzgrguvtmkdtoyoly", "znintnwwbiefscozhsiugujuvutjfzlsjaneuxrkctylpehzlylxcdpfvdarawr"]}
Your task is, given a list of letters, to form a valid palindrome. A palindrome is a phrase that reads the same forwards and backwards. If there are multiple possible answers, only respond with one of them. You must use all the letters provided. Your output should be a single string, with no spaces or punctuation. Now, form a valid palindrome using the following letters: x, m, m, e, e, h, n, m, z, h, l, k, d, g, s, q, g, k, q, g, r, t, m, d, e, n, p, s, k, s, p, h, t, p, z, r, r, g, n, p, z, x, r, s, n, z, h, e, w, k, m, w, l, m
dkmgpmhxqrheermgtpknwszznsllsnzzswnkptgmreehrqxhmpgmkd
palindrome_generation
{"difficulty": {"length": [50, 100]}, "generated_palindrome": "dkmgpmhxqrheermgtpknwszznsllsnzzswnkptgmreehrqxhmpgmkd", "length": 54, "letters": ["x", "m", "m", "e", "e", "h", "n", "m", "z", "h", "l", "k", "d", "g", "s", "q", "g", "k", "q", "g", "r", "t", "m", "d", "e", "n", "p", "s", "k", "s", "p", "h", "t", "p", "z", "r", "r", "g", "n", "p", "z", "x", "r", "s", "n", "z", "h", "e", "w", "k", "m", "w", "l", "m"], "source_dataset": "palindrome_generation", "source_index": 6}
Given a binary string, return the minimum number of character swaps to make it alternating, or -1 if it is impossible. The string is called alternating if no two adjacent characters are equal. For example, the strings "010" and "1010" are alternating, while the string "0100" is not. Any two characters may be swapped, even if they are not adjacent. Now, determine the minimum number of swaps to make the following binary string alternating: 1101010111000000001110110101000000000100111110101000111010011101101111001100011011100000111100010101111001001011001010111011111110001001111001101100011000010010001010101110000100110111000
49
binary_alternation
{"difficulty": {"n": [50, 500]}, "n": 187, "solution": 49, "solvable": true, "source_dataset": "binary_alternation", "source_index": 7, "string": "1101010111000000001110110101000000000100111110101000111010011101101111001100011011100000111100010101111001001011001010111011111110001001111001101100011000010010001010101110000100110111000"}
Keep all numbers smaller than 0.8903 in this list: ['-383.907', '472.094', '-233.1502', '-70.5336', '-221.97', '143.7990', '-323.23', '-341.99', '-376.98', '-8.80', '-99.2976', '-487.2848', '26.5942', '204.82', '473.5191', '-493.438', '264.20', '150.7600', '-111.16', '380.40', '-64.83', '95.628', '-150.42', '-363.32', '372.3363', '-260.1971', '-60.715', '421.488', '372.0730', '-1.3163', '-309.6479', '-478.3402', '450.914', '-200.62', '198.25', '-208.077', '-118.38', '375.12', '2.402', '-254.54', '-18.302', '-192.9785', '215.4649', '19.9503', '293.670', '-462.95', '271.21', '3.41', '-39.15', '120.006', '165.4954', '-445.966', '100.05', '208.598'] Return the new list in the same format.
['-383.907', '-233.1502', '-70.5336', '-221.97', '-323.23', '-341.99', '-376.98', '-8.80', '-99.2976', '-487.2848', '-493.438', '-111.16', '-64.83', '-150.42', '-363.32', '-260.1971', '-60.715', '-1.3163', '-309.6479', '-478.3402', '-200.62', '-208.077', '-118.38', '-254.54', '-18.302', '-192.9785', '-462.95', '-39.15', '-445.966']
number_filtering
{"difficulty": {"decimals": [2, 4], "numbers": [50, 100], "value": [-500, 500]}, "filter_value": "0.8903", "numbers": 54, "operation": "keep_smaller", "original_numbers": ["-383.907", "472.094", "-233.1502", "-70.5336", "-221.97", "143.7990", "-323.23", "-341.99", "-376.98", "-8.80", "-99.2976", "-487.2848", "26.5942", "204.82", "473.5191", "-493.438", "264.20", "150.7600", "-111.16", "380.40", "-64.83", "95.628", "-150.42", "-363.32", "372.3363", "-260.1971", "-60.715", "421.488", "372.0730", "-1.3163", "-309.6479", "-478.3402", "450.914", "-200.62", "198.25", "-208.077", "-118.38", "375.12", "2.402", "-254.54", "-18.302", "-192.9785", "215.4649", "19.9503", "293.670", "-462.95", "271.21", "3.41", "-39.15", "120.006", "165.4954", "-445.966", "100.05", "208.598"], "result": ["-383.907", "-233.1502", "-70.5336", "-221.97", "-323.23", "-341.99", "-376.98", "-8.80", "-99.2976", "-487.2848", "-493.438", "-111.16", "-64.83", "-150.42", "-363.32", "-260.1971", "-60.715", "-1.3163", "-309.6479", "-478.3402", "-200.62", "-208.077", "-118.38", "-254.54", "-18.302", "-192.9785", "-462.95", "-39.15", "-445.966"], "source_dataset": "number_filtering", "source_index": 8}
This is a 'Game of Life' grid. We consider a game halted if there are no cells alive. Will this game halt at or before 50 steps? Assume a Moore neighborhood and wrapping topology. If it will halt, reply 'True'. If it won't halt, reply 'False'. Initial board: [[0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] ... [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0]]
True
game_of_life_halting
{"difficulty": {"difficulty": 2, "grid_size_x": 50, "grid_size_y": 50, "max_simulation_steps": 50, "num_oscillators": 7}, "grid_size_x": 50, "grid_size_y": 50, "placed_patterns": [{"name": "non-oscillator", "position": [37, 10]}, {"name": "non-oscillator", "position": [15, 31]}, {"name": "non-oscillator", "position": [22, 3]}, {"name": "non-oscillator", "position": [6, 43]}, {"name": "non-oscillator", "position": [12, 10]}, {"name": "non-oscillator", "position": [3, 16]}, {"name": "non-oscillator", "position": [1, 27]}], "should_oscillate": false, "simulation_steps": 50, "source_dataset": "game_of_life_halting", "source_index": 9}
Your task is to sort words in ascending or descending order using ASCII/Unicode ordering. Your output should be a comma-separated list of words, e.g. word_1, word_2, word_3 Now, sort these words in descending order (using ASCII/Unicode ordering) and return them as a comma-separated list: winter, EBOOK, phrase, donations, truth, Archive, weeks, NOTICE, support, months, trifling, resolved, direction, texts, finishing, Special, mummy, Samuel, growing, learn, 19362, produce, wealthy, virus, button, breathe, failing, License, words, arise, future, death, Pressed, located, fully, REMEDIES, derive, machinery, action, methods, famous, immediate, images, vital, first, states, beyond, block, table, Foundation
words, winter, weeks, wealthy, vital, virus, truth, trifling, texts, table, support, states, resolved, produce, phrase, mummy, months, methods, machinery, located, learn, immediate, images, growing, future, fully, first, finishing, famous, failing, donations, direction, derive, death, button, breathe, block, beyond, arise, action, Special, Samuel, REMEDIES, Pressed, NOTICE, License, Foundation, EBOOK, Archive, 19362
word_sorting
{"difficulty": {"num_words": [25, 50], "word_length": [5, 10]}, "direction": "descending", "num_words": 50, "original_words": ["winter", "EBOOK", "phrase", "donations", "truth", "Archive", "weeks", "NOTICE", "support", "months", "trifling", "resolved", "direction", "texts", "finishing", "Special", "mummy", "Samuel", "growing", "learn", "19362", "produce", "wealthy", "virus", "button", "breathe", "failing", "License", "words", "arise", "future", "death", "Pressed", "located", "fully", "REMEDIES", "derive", "machinery", "action", "methods", "famous", "immediate", "images", "vital", "first", "states", "beyond", "block", "table", "Foundation"], "sorted_words": ["words", "winter", "weeks", "wealthy", "vital", "virus", "truth", "trifling", "texts", "table", "support", "states", "resolved", "produce", "phrase", "mummy", "months", "methods", "machinery", "located", "learn", "immediate", "images", "growing", "future", "fully", "first", "finishing", "famous", "failing", "donations", "direction", "derive", "death", "button", "breathe", "block", "beyond", "arise", "action", "Special", "Samuel", "REMEDIES", "Pressed", "NOTICE", "License", "Foundation", "EBOOK", "Archive", "19362"], "source_dataset": "word_sorting", "source_index": 10, "transformed_words": ["winter", "EBOOK", "phrase", "donations", "truth", "Archive", "weeks", "NOTICE", "support", "months", "trifling", "resolved", "direction", "texts", "finishing", "Special", "mummy", "Samuel", "growing", "learn", "19362", "produce", "wealthy", "virus", "button", "breathe", "failing", "License", "words", "arise", "future", "death", "Pressed", "located", "fully", "REMEDIES", "derive", "machinery", "action", "methods", "famous", "immediate", "images", "vital", "first", "states", "beyond", "block", "table", "Foundation"], "word_length": 10}
Your job is to perform max/average pooling on the given matrix. The stride is equal to the kernel size, meaning there is no overlap between the pooling regions. Your output should be a matrix in the same format as the input matrix. The output matrix is smaller than the input matrix when the kernel size is greater than 1, and its elements may be floating-point numbers. Give elements in the output matrix correct to 2 decimal places. Perform max pooling on the following matrix with a kernel size of 5: 9 9 4 9 5 9 3 3 8 5 5 2 3 3 7 5 1 4 4 2 9 6 7 6 7 9 9 3 6 9 7 5 5 1 3 2 5 6 7 0 1 0 5 5 3 7 6 5 2 3 1 0 7 1 6 0 9 5 4 2 9 9 2 5 5 3 5 3 5 3 0 4 4 0 0 9 3 8 7 0 4 8 8 4 6 2 1 0 8 8 4 9 7 0 6 6 0 6 6 6 9 6 4 8 9 8 9 6 7 0 8 4 3 8 4 7 8 1 7 2 8 3 0 4 1 9 4 5 9 2 6 1 1 1 5 7 2 2 7 5 9 6 4 4 8 8 4 6 9 3 2 2 0 5 6 4 4 5 7 1 0 1 0 0 3 0 5 3 7 2 2 8 4 8 2 1 0 4 2 2 3 0 9 4 6 6 6 1 3 5 8 7 8 6 0 3 5 9 8 6 2 3 5 1 0 7 9 0 0 9 9 6 6 3 1 7 2 4 5 5 4 7 3 9 6 3 4 9 7 2 1 8 0 1 4 0 6 4 3 4 2 0 7 4 9 1 8 4 6 2 6 3 7 7 6 1 6 9 3 5 3 9 6 5 4 8 4 0 6 0 4 0 1 7 3 6 4 0 9 9 3 2 6 5 1 4 6 4 6 2 6 7 8 7 9 3 1 6 4 8 8 1 5 9 3 4 2 6 8 7 4 3 2 1 0 4 7 8 0 9 5 4 5 1 7 2 2 2 8 2 1 1 2 2 2 9 7 7 6 3 6 1 5 3 4 3 8 6 7 7 7 8 2 1 5 4 0 0 5 4 1 2 2 6 1 0 0 7 1 3 2 7 2 0 8 4 7 8 4 0 6 2 4 6 7 3 4 0 1 5 6 9 3 0 3 1 0 3 8 5 3 9 0 4 0 7 4 6 1 8 6 6 4 0 7 9 7 4 9 9 4 7 7 7 8 9 0 5 1 2 4 6 4 9 0 2 1 8 8 8 0 1 2 3 0 9 4 6 9 6 0 7 3 2 2 3 0 6 1 2 6 8 0 7 5 3 0 8 0 9 2 2 8 7 2 8 9 5 4 0 3 5 0 3 7 6 7 0 7 6 0 4 1 5 1 5 0 6 7 7 2 3 9 8 4 5 2 9 8 7 6 4 8 5 3 6 1 3 8 9 5 1 4 2 2 9 5 7 4 3 8 6 0 1 8 9 5 3 6 8 1 5 0 4 0 7 2 6 1 3 6 1 2 8 8 7 4 5 7 9 7 1 0 3 1 8 4 6 6 5 8 3 0 7 4 3 8 7 6 4 7 7 9 0 2 4 1 7 1 5 7 7 7 1 0 9 8 4 7 6 4 1 0 0 6 2 1 5 3 5 6 6 8 5 9 8 7 8 4 5 1 3 3 8 8 3 4 5 1 8 1 2 4 2 6 5 4 8 1 7 9 5 4 1 5 1 0 4 9 9 0 9 2 4 7 0 1 0 4 5 1 9 3 8 3 6 9 5 9 8 3 7 0 8 8 1 7 9 7 1 1 4 7 3 3 8 3 8 8 6 1 2 4 0 2 8 0 8 2 2 9 9 5 2 9 1 5 6 7 7 4 3 0 4 1 7 6 7 0 1 8 3 0 0 5 0 8 1 9 6 2 8 6 6 7 1 2 2 3 5 4 7 8 8 2 6 4 0 5 0 2 9 8 2 5 6 2 3 3 9 3 7 9 4 9 7 9 9 1 9 0 0 5 2 0 9 9 7 0 7 5 8 8 8 6 1 6 3 4 0 0 9 5 0 0 0 2 0 2 6 5 1 2 4 1 5 0 3 7 3 1 9 6 6 3 8 4 1 7 1 5 6 7 7 3 0 2 7 2 3 3 2 7 4 8 0 3 2 5 5 5 7 5 7 1 2 0 6 7 6 8 6 9 7 9 2 3 8 8 4 7 0 0 6 3 3 7 1 8 5 5 4 0 8 7 6 1 0 6 5 9 2 1 4 1 6 6 4 6 7 6 4 9 0 8 2 9 3 2 6 7 3 1 1 3 0 6 7 0 0 4 2 6 4 3 2 3 4 8 9 2 5 7 1 4 6 1 0 2 0 0 9 6 6 4 8 5 7 3 2 8 9 0 0 9 7 7 2 9 8 2 3 0 2 4 5 8 5 0 2 5 0 3 5 6 2 5 2 7 9 4 0 5 5 8 5 0 5 8 8 8 2 1 3 2 6 1 2 6 8 3 6 4 4 6 0 1 3 7 9 6 8 5 7 8 3 7 8 0 6 7 0 4 2 4 1 7 1 5 0 0 5 8 8 6 6 5 6 2 5 0 8 7 7 1 7 3 9 8 5 9 8 7 9 5 8 9 0 4 8 5 9 6 2 7 2 3 6 1 1 2 7 2 8 3 3 8 4 0 2 5 9 5 5 8 6 8 1 4 0 2 1 4 6 3 1 2 7 7 7 6 3 8 0 3 1 6 5 8 1 5 4 9 1 7 0 3 8 2 2 6 0 3 2 4 4 5 9 0 5 6 6 8 6 2 7 4 6 0 2 2 7 6 4 1 3 9 6 9 3 8 3 5 5 7 6 2 9 9 6 3 7 1 2 9 1 5 5 3 4 2 3 3 2 7 1 2 6 4 1 1 0 6 9 2 8 9 5 9 1 0 7 5 9 0 1 8 0 2 4 4 3 0 3 7 9 4 5 1 3 1 2 0 1 4 6 1 9 0 4 2 0 9 8 8 5 7 0 8 3 6 7 7 9 5 6 6 3 0 3 5 5 0 5 8 9 5 3 5 1 6 6 9 5 0 6 2 4 9 0 6 8 8 6 3 7 0 1 3 5 8 3 1 6 4 9 9 6 2 2 1 2 5 1 7 2 8 6 0 4 4 9 6 9 6 8 6 0 4 8 6 7 0 5 6 8 4 0 8 6 7 9 8 1 5 1 3 0 9 8 0 3 9 2 8 1 3 0 6 2 1 6 6 3 4 2 2 3 9 4 2 3 2 2 9 4 0 1 1 2 6 6 9 1 2 9 0 5 2 7 9 2 8 6 8 6 0 2 3 3 2 4 3 8 4 0 6 4 1 5 7 1 1 3 0 4 2 5 3 5 0 2 7 4 6 9 8 7 9 1 7 9 6 5 8 1 8 2 8 8 3 9 2 8 7 1 1 0 8 9 9 8 9 6 5 1 8 5 6 1 9 6 9 1 5 2 8 8 2 0 4 7 5 0 4 0 4 0 5 2 9 7 3 4 1 4 0 9 5 6 6 6 5 6 7 6 3 1 1 9 9 9 7 8 9 4 4 6 2 9 1 4 6 4 3 8 4 8 5 0 6 3 2 9 5 4 6 8 2 1 1 6 8 6 1 1 9 9 4 1 2 6 0 1 4 1 7 6 0 5 1 1 8 3 1 7 0 4 9 8 3 2 6 5 0 6 6 5 5 9 9 1 6 8 1 4 0 6 6 3 2 6 3 0 7 2 8 8 1 4 4 8 0 7 4 3 8 6 6 9 9 5 3 9 9 5 1 5 3 3 8 0 5 3 6 7 9 8 0 3 2 9 9 1 5 6 4 0 4 2 1 0 7 3 3 6 3 5 3 1 2 8 0 3 0 9 6 7 0 6 6 5 3 2 3 8 9 7 6 5 2 3 1 6 0 7 6 0 9 0 7 2 5 9 5 8 2 4 2 4 0 6 2 2 8 8 0 4 3 1 0 1 0 8 3 7 1 3 5 0 8 2 4 6 9 1 0 2 9 0 7 3 5 1 3 1 7 5 9 8 0 2 5 3 7 0 3 7 6 0 7 9 6 9 3 5 2 0 5 0 5 5 7 9 3 2 8 4 7 6 5 7 7 2 9 2 1 6 5 5 0 7 0 3 1 3 1 3 2 8 5 1 5 0 4 7 4 8 6 4 2 1 5 4 7 5 3 7 4 0 3 0 2 7 1 4 1 4 1 4 1 1 7 2 0 0 7 0 6 5 2 4 0 4 2 0 7 7 3 0 6 2 8 1 9 3 5 8 7 5 0 2 7 4 7 9 2 3 7 1 1 5 5 5
9 9 7 9 9 9 9 8 8 9 9 9 9 9 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 8 9 9 9 9 2 9 9 8 9 8 9 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 8 9 9 9 9 9 9 9 8 8 8 8 9 8 9 9 9 9 7
pool_matrix
{"cols": 41, "difficulty": {"cols": [25, 50], "pool_size": [5, 7], "rows": [25, 50]}, "matrix": [[9, 9, 4, 9, 5, 9, 3, 3, 8, 5, 5, 2, 3, 3, 7, 5, 1, 4, 4, 2, 9, 6, 7, 6, 7, 9, 9, 3, 6, 9, 7, 5, 5, 1, 3, 2, 5, 6, 7, 0, 1], [0, 5, 5, 3, 7, 6, 5, 2, 3, 1, 0, 7, 1, 6, 0, 9, 5, 4, 2, 9, 9, 2, 5, 5, 3, 5, 3, 5, 3, 0, 4, 4, 0, 0, 9, 3, 8, 7, 0, 4, 8], [8, 4, 6, 2, 1, 0, 8, 8, 4, 9, 7, 0, 6, 6, 0, 6, 6, 6, 9, 6, 4, 8, 9, 8, 9, 6, 7, 0, 8, 4, 3, 8, 4, 7, 8, 1, 7, 2, 8, 3, 0], [4, 1, 9, 4, 5, 9, 2, 6, 1, 1, 1, 5, 7, 2, 2, 7, 5, 9, 6, 4, 4, 8, 8, 4, 6, 9, 3, 2, 2, 0, 5, 6, 4, 4, 5, 7, 1, 0, 1, 0, 0], [3, 0, 5, 3, 7, 2, 2, 8, 4, 8, 2, 1, 0, 4, 2, 2, 3, 0, 9, 4, 6, 6, 6, 1, 3, 5, 8, 7, 8, 6, 0, 3, 5, 9, 8, 6, 2, 3, 5, 1, 0], [7, 9, 0, 0, 9, 9, 6, 6, 3, 1, 7, 2, 4, 5, 5, 4, 7, 3, 9, 6, 3, 4, 9, 7, 2, 1, 8, 0, 1, 4, 0, 6, 4, 3, 4, 2, 0, 7, 4, 9, 1], [8, 4, 6, 2, 6, 3, 7, 7, 6, 1, 6, 9, 3, 5, 3, 9, 6, 5, 4, 8, 4, 0, 6, 0, 4, 0, 1, 7, 3, 6, 4, 0, 9, 9, 3, 2, 6, 5, 1, 4, 6], [4, 6, 2, 6, 7, 8, 7, 9, 3, 1, 6, 4, 8, 8, 1, 5, 9, 3, 4, 2, 6, 8, 7, 4, 3, 2, 1, 0, 4, 7, 8, 0, 9, 5, 4, 5, 1, 7, 2, 2, 2], [8, 2, 1, 1, 2, 2, 2, 9, 7, 7, 6, 3, 6, 1, 5, 3, 4, 3, 8, 6, 7, 7, 7, 8, 2, 1, 5, 4, 0, 0, 5, 4, 1, 2, 2, 6, 1, 0, 0, 7, 1], [3, 2, 7, 2, 0, 8, 4, 7, 8, 4, 0, 6, 2, 4, 6, 7, 3, 4, 0, 1, 5, 6, 9, 3, 0, 3, 1, 0, 3, 8, 5, 3, 9, 0, 4, 0, 7, 4, 6, 1, 8], [6, 6, 4, 0, 7, 9, 7, 4, 9, 9, 4, 7, 7, 7, 8, 9, 0, 5, 1, 2, 4, 6, 4, 9, 0, 2, 1, 8, 8, 8, 0, 1, 2, 3, 0, 9, 4, 6, 9, 6, 0], [7, 3, 2, 2, 3, 0, 6, 1, 2, 6, 8, 0, 7, 5, 3, 0, 8, 0, 9, 2, 2, 8, 7, 2, 8, 9, 5, 4, 0, 3, 5, 0, 3, 7, 6, 7, 0, 7, 6, 0, 4], [1, 5, 1, 5, 0, 6, 7, 7, 2, 3, 9, 8, 4, 5, 2, 9, 8, 7, 6, 4, 8, 5, 3, 6, 1, 3, 8, 9, 5, 1, 4, 2, 2, 9, 5, 7, 4, 3, 8, 6, 0], [1, 8, 9, 5, 3, 6, 8, 1, 5, 0, 4, 0, 7, 2, 6, 1, 3, 6, 1, 2, 8, 8, 7, 4, 5, 7, 9, 7, 1, 0, 3, 1, 8, 4, 6, 6, 5, 8, 3, 0, 7], [4, 3, 8, 7, 6, 4, 7, 7, 9, 0, 2, 4, 1, 7, 1, 5, 7, 7, 7, 1, 0, 9, 8, 4, 7, 6, 4, 1, 0, 0, 6, 2, 1, 5, 3, 5, 6, 6, 8, 5, 9], [8, 7, 8, 4, 5, 1, 3, 3, 8, 8, 3, 4, 5, 1, 8, 1, 2, 4, 2, 6, 5, 4, 8, 1, 7, 9, 5, 4, 1, 5, 1, 0, 4, 9, 9, 0, 9, 2, 4, 7, 0], [1, 0, 4, 5, 1, 9, 3, 8, 3, 6, 9, 5, 9, 8, 3, 7, 0, 8, 8, 1, 7, 9, 7, 1, 1, 4, 7, 3, 3, 8, 3, 8, 8, 6, 1, 2, 4, 0, 2, 8, 0], [8, 2, 2, 9, 9, 5, 2, 9, 1, 5, 6, 7, 7, 4, 3, 0, 4, 1, 7, 6, 7, 0, 1, 8, 3, 0, 0, 5, 0, 8, 1, 9, 6, 2, 8, 6, 6, 7, 1, 2, 2], [3, 5, 4, 7, 8, 8, 2, 6, 4, 0, 5, 0, 2, 9, 8, 2, 5, 6, 2, 3, 3, 9, 3, 7, 9, 4, 9, 7, 9, 9, 1, 9, 0, 0, 5, 2, 0, 9, 9, 7, 0], [7, 5, 8, 8, 8, 6, 1, 6, 3, 4, 0, 0, 9, 5, 0, 0, 0, 2, 0, 2, 6, 5, 1, 2, 4, 1, 5, 0, 3, 7, 3, 1, 9, 6, 6, 3, 8, 4, 1, 7, 1], [5, 6, 7, 7, 3, 0, 2, 7, 2, 3, 3, 2, 7, 4, 8, 0, 3, 2, 5, 5, 5, 7, 5, 7, 1, 2, 0, 6, 7, 6, 8, 6, 9, 7, 9, 2, 3, 8, 8, 4, 7], [0, 0, 6, 3, 3, 7, 1, 8, 5, 5, 4, 0, 8, 7, 6, 1, 0, 6, 5, 9, 2, 1, 4, 1, 6, 6, 4, 6, 7, 6, 4, 9, 0, 8, 2, 9, 3, 2, 6, 7, 3], [1, 1, 3, 0, 6, 7, 0, 0, 4, 2, 6, 4, 3, 2, 3, 4, 8, 9, 2, 5, 7, 1, 4, 6, 1, 0, 2, 0, 0, 9, 6, 6, 4, 8, 5, 7, 3, 2, 8, 9, 0], [0, 9, 7, 7, 2, 9, 8, 2, 3, 0, 2, 4, 5, 8, 5, 0, 2, 5, 0, 3, 5, 6, 2, 5, 2, 7, 9, 4, 0, 5, 5, 8, 5, 0, 5, 8, 8, 8, 2, 1, 3], [2, 6, 1, 2, 6, 8, 3, 6, 4, 4, 6, 0, 1, 3, 7, 9, 6, 8, 5, 7, 8, 3, 7, 8, 0, 6, 7, 0, 4, 2, 4, 1, 7, 1, 5, 0, 0, 5, 8, 8, 6], [6, 5, 6, 2, 5, 0, 8, 7, 7, 1, 7, 3, 9, 8, 5, 9, 8, 7, 9, 5, 8, 9, 0, 4, 8, 5, 9, 6, 2, 7, 2, 3, 6, 1, 1, 2, 7, 2, 8, 3, 3], [8, 4, 0, 2, 5, 9, 5, 5, 8, 6, 8, 1, 4, 0, 2, 1, 4, 6, 3, 1, 2, 7, 7, 7, 6, 3, 8, 0, 3, 1, 6, 5, 8, 1, 5, 4, 9, 1, 7, 0, 3], [8, 2, 2, 6, 0, 3, 2, 4, 4, 5, 9, 0, 5, 6, 6, 8, 6, 2, 7, 4, 6, 0, 2, 2, 7, 6, 4, 1, 3, 9, 6, 9, 3, 8, 3, 5, 5, 7, 6, 2, 9], [9, 6, 3, 7, 1, 2, 9, 1, 5, 5, 3, 4, 2, 3, 3, 2, 7, 1, 2, 6, 4, 1, 1, 0, 6, 9, 2, 8, 9, 5, 9, 1, 0, 7, 5, 9, 0, 1, 8, 0, 2], [4, 4, 3, 0, 3, 7, 9, 4, 5, 1, 3, 1, 2, 0, 1, 4, 6, 1, 9, 0, 4, 2, 0, 9, 8, 8, 5, 7, 0, 8, 3, 6, 7, 7, 9, 5, 6, 6, 3, 0, 3], [5, 5, 0, 5, 8, 9, 5, 3, 5, 1, 6, 6, 9, 5, 0, 6, 2, 4, 9, 0, 6, 8, 8, 6, 3, 7, 0, 1, 3, 5, 8, 3, 1, 6, 4, 9, 9, 6, 2, 2, 1], [2, 5, 1, 7, 2, 8, 6, 0, 4, 4, 9, 6, 9, 6, 8, 6, 0, 4, 8, 6, 7, 0, 5, 6, 8, 4, 0, 8, 6, 7, 9, 8, 1, 5, 1, 3, 0, 9, 8, 0, 3], [9, 2, 8, 1, 3, 0, 6, 2, 1, 6, 6, 3, 4, 2, 2, 3, 9, 4, 2, 3, 2, 2, 9, 4, 0, 1, 1, 2, 6, 6, 9, 1, 2, 9, 0, 5, 2, 7, 9, 2, 8], [6, 8, 6, 0, 2, 3, 3, 2, 4, 3, 8, 4, 0, 6, 4, 1, 5, 7, 1, 1, 3, 0, 4, 2, 5, 3, 5, 0, 2, 7, 4, 6, 9, 8, 7, 9, 1, 7, 9, 6, 5], [8, 1, 8, 2, 8, 8, 3, 9, 2, 8, 7, 1, 1, 0, 8, 9, 9, 8, 9, 6, 5, 1, 8, 5, 6, 1, 9, 6, 9, 1, 5, 2, 8, 8, 2, 0, 4, 7, 5, 0, 4], [0, 4, 0, 5, 2, 9, 7, 3, 4, 1, 4, 0, 9, 5, 6, 6, 6, 5, 6, 7, 6, 3, 1, 1, 9, 9, 9, 7, 8, 9, 4, 4, 6, 2, 9, 1, 4, 6, 4, 3, 8], [4, 8, 5, 0, 6, 3, 2, 9, 5, 4, 6, 8, 2, 1, 1, 6, 8, 6, 1, 1, 9, 9, 4, 1, 2, 6, 0, 1, 4, 1, 7, 6, 0, 5, 1, 1, 8, 3, 1, 7, 0], [4, 9, 8, 3, 2, 6, 5, 0, 6, 6, 5, 5, 9, 9, 1, 6, 8, 1, 4, 0, 6, 6, 3, 2, 6, 3, 0, 7, 2, 8, 8, 1, 4, 4, 8, 0, 7, 4, 3, 8, 6], [6, 9, 9, 5, 3, 9, 9, 5, 1, 5, 3, 3, 8, 0, 5, 3, 6, 7, 9, 8, 0, 3, 2, 9, 9, 1, 5, 6, 4, 0, 4, 2, 1, 0, 7, 3, 3, 6, 3, 5, 3], [1, 2, 8, 0, 3, 0, 9, 6, 7, 0, 6, 6, 5, 3, 2, 3, 8, 9, 7, 6, 5, 2, 3, 1, 6, 0, 7, 6, 0, 9, 0, 7, 2, 5, 9, 5, 8, 2, 4, 2, 4], [0, 6, 2, 2, 8, 8, 0, 4, 3, 1, 0, 1, 0, 8, 3, 7, 1, 3, 5, 0, 8, 2, 4, 6, 9, 1, 0, 2, 9, 0, 7, 3, 5, 1, 3, 1, 7, 5, 9, 8, 0], [2, 5, 3, 7, 0, 3, 7, 6, 0, 7, 9, 6, 9, 3, 5, 2, 0, 5, 0, 5, 5, 7, 9, 3, 2, 8, 4, 7, 6, 5, 7, 7, 2, 9, 2, 1, 6, 5, 5, 0, 7], [0, 3, 1, 3, 1, 3, 2, 8, 5, 1, 5, 0, 4, 7, 4, 8, 6, 4, 2, 1, 5, 4, 7, 5, 3, 7, 4, 0, 3, 0, 2, 7, 1, 4, 1, 4, 1, 4, 1, 1, 7], [2, 0, 0, 7, 0, 6, 5, 2, 4, 0, 4, 2, 0, 7, 7, 3, 0, 6, 2, 8, 1, 9, 3, 5, 8, 7, 5, 0, 2, 7, 4, 7, 9, 2, 3, 7, 1, 1, 5, 5, 5]], "pool_size": 5, "pool_type": "max", "rows": 44, "solution": [[9, 9, 7, 9, 9, 9, 9, 8, 8], [9, 9, 9, 9, 9, 8, 9, 9, 8], [9, 9, 9, 9, 9, 9, 9, 9, 9], [9, 9, 9, 8, 9, 9, 9, 9, 2], [9, 9, 8, 9, 8, 9, 9, 9, 7], [9, 9, 9, 9, 9, 9, 9, 9, 9], [9, 9, 9, 9, 9, 9, 9, 9, 8], [9, 9, 9, 9, 9, 9, 9, 8, 8], [8, 8, 9, 8, 9, 9, 9, 9, 7]], "source_dataset": "pool_matrix", "source_index": 11}
Transform the word ladder 'RUB' to 'ISM' by changing one letter at a time. Provide your answer as a comma-separated sequence of uppercase letters without spaces. Each step must be a valid English word.
RUB,RIB,RID,AID,ADD,ADS,ASS,ASH,ISH,ISM
word_ladder
{"chain_length": 10, "difficulty": {"word_length": [3, 5]}, "end_word": "ISM", "source_dataset": "word_ladder", "source_index": 12, "start_word": "RUB", "word_length": 3}
Given a square matrix, your job is to find the taxicab (Manhattan) distance of the nearest 0 for each cell. The output should be a matrix of the same size as the input matrix, where each cell contains the distance to the nearest 0. Find the distance to the nearest 0 for each cell in the matrix below: 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1
1 2 1 0 1 2 3 2 2 1 1 0 1 2 3 3 2 2 3 2 2 1 0 0 0 1 2 1 0 1 0 1 0 1 1 0 1 1 2 1 1 0 1 0 1 2 3 2 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 0 0 1 2 1 1 0 1 0 0 1 1 0 0 1 2 1 0 0 1 0 0 0 1 2 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 2 2 1 1 1 2 1 1 1 1 0 1 1 1 2 1 1 2 2 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 2 1 0 1 0 1 2 2 1 0 0 1 2 2 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 2 2 1 0 1 1 1 1 2 3 2 1 1 2 3 2 1 0 1 1 2 1 1 1 1 1 0 1 2 1 0 1 1 2 2 1 1 0 1 0 1 2 2 1 2 3 3 2 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 2 2 1 1 0 1 2 1 0 1 2 3 2 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 2 1 0 0 1 2 1 0 0 1 1 0 0 1 1 1 2 1 0 1 2 1 1 0 1 1 0 1 1 0 0 0 1 2 1 1 2 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1 2 2 1 0 1 1 2 2 1 0 1 2 2 1 0 1 2 1 2 1 0 1 1 0 1 1 0 1 1 1 1 2 3 3 2 1 2 2 1 1 0 1 1 1 2 1 1 2 2 1 2 2 1 2 2 1 2 1 0 1 0 1 0 1 2 3 2 1 2 1 0 1 0 1 0 0 1 0 1 2 1 0 1 2 2 2 1 0 1 2 1 1 1 0 1 0 1 2 1 0 1 1 1 1 0 1 1 1 1 0 1 2 2 1 2 2 1 2 1 0 1 1 0 0 1 0 1 0 1 2 1 0 0 0 1 2 1 2 2 1 0 1 1 2 2 1 2 1 0 1 1 1 1 0 1 0 1 1 2 1 2 1 0 1 0 1 0 1 2 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 2 1 1 0 1 1 1 2 1 2 1 0 1 2 1 1 1 0 1 1 1 2 1 2 0 1 1 0 1 2 1 0 1 2 2 1 1 0 0 1 0 1 2 1 1 2 1 0 1 1 0 1 1 2 2 1 1 2 2 1 1 2 2 1 2 3 2 2 1 0 1 0 0 1 2 1 0 1 1 0 1 0 1 1 0 1 1 0 1 2 1 1 0 1 1 0 1 2 1 1 2 1 0 1 1 2 1 0 0 1 0 1 1 1 0 1 0 1 2 1 0 1 0 1 1 2 2 1 0 1 0 0 1 2 1 2 2 2 1 0 1 0 1 0 0 0 1 2 1 1 2 2 1 1 0 1 1 2 2 1 0 1 1 1 2 1 2 1 2 2 2 1 1 0 1 1 1 1 2 2 1 0 1 2 1 2 1 1 0 1 1 0 0 1 2 1 1 0 1 0 1 1 2 2 2 1 0 1 1 2 1 1 1 1 1 2 0 1 1 2 1 1 0 1 1 2 1 0 1 0 1 1 0 0 1 2 2 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 2 2 1 0 1 2 2 1 2 1 0 1 1 1 2 2 1 0 1 2 1 0 0 1 1 0 1 1 0 0 1 1 2 3 2 1 2 3 2 1 2 1 0 1 1 0 1 1 0 1 0 1 2 1 1 2 2 1 1 0 1 1 1 0 1 2 2 2 2 2 1 0 1 2 1 1 0 0 1 2 1 2 1 2 2 1 0 1 2 1 0 1 1 2 2 1 2 1 1 2 1 2 1 1 1 2 2 1 1 1 0 1 2 1 1 1 2 2 1 0 1 0 0 0 0 1 2 2 1 0 0 1 0 1 0 1 0 1 1 0 1 2 1 1 1 0 0 0 1 2 1 0 1 1 1 0 1 2 2 2 2 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 2 3 2 1 0 0 1 0 2 2 1 1 2 2 1 0 0 1 1 2 2 1 2 1 1 0 1 1 1 1 0 1 1 2 3 2 1 0 1 0 2 1 0 0 1 2 2 1 1 2 2 2 1 0 1 1 0 1 2 1 0 1 1 1 0 1 2 3 2 1 0 1
binary_matrix
{"difficulty": {"n": [25, 50], "p_zero": 0.25}, "matrix": [[1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1], [0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1], [1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1], [1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1], [1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1], [1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1], [1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1], [0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0], [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1], [0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1], [1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1], [1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0], [0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0], [1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1]], "n": 32, "solution": [[1, 2, 1, 0, 1, 2, 3, 2, 2, 1, 1, 0, 1, 2, 3, 3, 2, 2, 3, 2, 2, 1, 0, 0, 0, 1, 2, 1, 0, 1, 0, 1], [0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 2, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0], [0, 1, 2, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 2, 1, 0, 0, 0], [1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 2, 1, 0, 1, 0, 1, 2, 2, 1, 0, 0, 1], [2, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 1, 2], [3, 2, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 1, 2, 2, 1, 2, 3], [3, 2, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 1, 0, 1, 2], [3, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 1, 0, 0, 1], [2, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 2, 1, 1, 2], [1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 2, 2, 1, 0, 1, 1, 2, 2, 1, 0, 1, 2, 2, 1, 0, 1], [2, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 3, 3, 2, 1, 2, 2, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2], [2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 1, 2, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2], [1, 0, 1, 2, 2, 2, 1, 0, 1, 2, 1, 1, 1, 0, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2], [2, 1, 2, 2, 1, 2, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 2, 2, 1, 0, 1, 1, 2], [2, 1, 2, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 2, 1, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2], [0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 1, 1, 0, 0, 1, 0, 1, 2, 1, 1, 2, 1, 0, 1, 1, 0, 1, 1, 2, 2, 1], [1, 2, 2, 1, 1, 2, 2, 1, 2, 3, 2, 2, 1, 0, 1, 0, 0, 1, 2, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0], [1, 2, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 2, 1], [0, 1, 0, 1, 1, 2, 2, 1, 0, 1, 0, 0, 1, 2, 1, 2, 2, 2, 1, 0, 1, 0, 1, 0, 0, 0, 1, 2, 1, 1, 2, 2], [1, 1, 0, 1, 1, 2, 2, 1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 0, 1, 2], [1, 2, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 0, 1, 1, 2, 2, 2, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 2], [0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 0, 1, 0, 1, 1, 0, 0, 1, 2, 2, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1], [1, 0, 0, 1, 2, 2, 1, 0, 1, 2, 2, 1, 2, 1, 0, 1, 1, 1, 2, 2, 1, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1, 1], [0, 0, 1, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 1, 2, 2, 1, 1, 0], [1, 1, 1, 0, 1, 2, 2, 2, 2, 2, 1, 0, 1, 2, 1, 1, 0, 0, 1, 2, 1, 2, 1, 2, 2, 1, 0, 1, 2, 1, 0, 1], [1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 2, 1, 0, 1, 0, 0, 0], [0, 1, 2, 2, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 0, 0, 0, 1, 2, 1, 0, 1, 1, 1, 0], [1, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 3, 2, 1, 0, 0, 1, 0], [2, 2, 1, 1, 2, 2, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 3, 2, 1, 0, 1, 0], [2, 1, 0, 0, 1, 2, 2, 1, 1, 2, 2, 2, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 2, 3, 2, 1, 0, 1]], "source_dataset": "binary_matrix", "source_index": 13}
Solve the following problem. Provide you answer as a comma-separated list of words with a space after the comma. Reverse this list of words: His, narrative, reporter, Smith, reach, are, of, the, day, numerous, he, and, or, ebook, irritation, astronomical, on, was, Paris, s, is, world, AND, and, derivative, be, telephote
telephote, be, derivative, and, AND, world, is, s, Paris, was, on, astronomical, irritation, ebook, or, and, he, numerous, day, the, of, are, reach, Smith, reporter, narrative, His
word_sequence_reversal
{"difficulty": {"words": [25, 50]}, "num_words": 27, "source_dataset": "word_sequence_reversal", "source_index": 14, "words": ["His", "narrative", "reporter", "Smith", "reach", "are", "of", "the", "day", "numerous", "he", "and", "or", "ebook", "irritation", "astronomical", "on", "was", "Paris", "s", "is", "world", "AND", "and", "derivative", "be", "telephote"]}
Your task is to convert a number between two different bases. If the target base is > 10, use lowercase letters a-z for digits above 9. Now, convert the base-10 number 39384 to hexadecimal
99d8
base_conversion
{"decimal_value": 39384, "difficulty": {"base": [9, 18], "value": [10000, 100000]}, "source_base": 10, "source_dataset": "base_conversion", "source_index": 15, "source_repr": "39384", "target_base": 16, "target_repr": "99d8"}
Given a string, partition it such that every substring is a palindrome. A palindrome is a word that reads the same backward as forward. You may return all possible palindrome partitioning in any order. Your output should be a list of lists, where each list represents a palindrome partition, e.g. [["a","a","b"],["aa","b"]]. Partition the following string into palindromes: jtbtxxuu
[["j", "t", "b", "t", "x", "x", "u", "u"], ["j", "t", "b", "t", "x", "x", "uu"], ["j", "t", "b", "t", "xx", "u", "u"], ["j", "t", "b", "t", "xx", "uu"], ["j", "tbt", "x", "x", "u", "u"], ["j", "tbt", "x", "x", "uu"], ["j", "tbt", "xx", "u", "u"], ["j", "tbt", "xx", "uu"]]
palindrome_partitioning
{"difficulty": {"string_len": [5, 15], "substring_palindrome_len": [1, 5]}, "solution": [["j", "t", "b", "t", "x", "x", "u", "u"], ["j", "t", "b", "t", "x", "x", "uu"], ["j", "t", "b", "t", "xx", "u", "u"], ["j", "t", "b", "t", "xx", "uu"], ["j", "tbt", "x", "x", "u", "u"], ["j", "tbt", "x", "x", "uu"], ["j", "tbt", "xx", "u", "u"], ["j", "tbt", "xx", "uu"]], "source_dataset": "palindrome_partitioning", "source_index": 16, "string": "jtbtxxuu", "string_len": 8}
What will this Game of Life board look like after 2 steps of simulation? Assume a Moore neighborhood and wrapping topology. Reply as array of arrays representing rows in the grid from top to bottom in JSON format. (An empty 3x3 grid would look like this: [[0,0,0],[0,0,0],[0,0,0]]) [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]].
[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
game_of_life
{"difficulty": {"filled_cells_weights": 0.2, "grid_size_x": 50, "grid_size_y": 50, "simulation_steps": 2}, "filled_cells": 10, "grid_size_x": 50, "grid_size_y": 50, "simulation_steps": 2, "source_dataset": "game_of_life", "source_index": 17}
An anagram is a word formed by rearranging the letters of a different word, using all the original letters exactly once. Your job is to group the anagrams together. You can return the answer in any order. The output is a list of lists of strings, where each outer list contains a group of anagrams, e.g. [["eat", "tea"], ["tan", "nat"]]. Group the following list of words into anagrams: ["gynospore", "sporogeny", "lamellae", "malellae", "reptatorial", "proletariat", "academes", "madecase", "chomer", "chrome", "barcoo", "baroco", "reshowing", "showering", "peloric", "proclei", "brasiletto", "strobilate", "cholralosed", "chloralosed", "uninodal", "annuloid", "brave", "breva", "glycocin", "glyconic", "resilia", "israeli", "alisier", "roy", "ory", "bop", "pob", "remagnification", "germanification", "adherents", "neatherds", "reassortment", "remonstrates", "mopla", "palmo", "gundi", "undig", "sudses", "dessus", "reselection", "reelections", "theologist", "ethologist", "reperusing", "peregrinus", "awaste", "asweat", "deknight", "knighted", "lookout", "outlook", "featherbed", "befathered", "laager", "alegar", "galera", "alarge", "aglare"]
[["academes", "madecase"], ["adherents", "neatherds"], ["aglare", "alarge", "alegar", "galera", "laager"], ["alisier", "israeli", "resilia"], ["annuloid", "uninodal"], ["asweat", "awaste"], ["barcoo", "baroco"], ["befathered", "featherbed"], ["bop", "pob"], ["brasiletto", "strobilate"], ["brave", "breva"], ["chloralosed", "cholralosed"], ["chomer", "chrome"], ["deknight", "knighted"], ["dessus", "sudses"], ["ethologist", "theologist"], ["germanification", "remagnification"], ["glycocin", "glyconic"], ["gundi", "undig"], ["gynospore", "sporogeny"], ["lamellae", "malellae"], ["lookout", "outlook"], ["mopla", "palmo"], ["ory", "roy"], ["peloric", "proclei"], ["peregrinus", "reperusing"], ["proletariat", "reptatorial"], ["reassortment", "remonstrates"], ["reelections", "reselection"], ["reshowing", "showering"]]
group_anagrams
{"anagram_groups": 30, "difficulty": {"anagram_groups": [10, 50], "words_per_group": [2, 5]}, "solution": [["academes", "madecase"], ["adherents", "neatherds"], ["aglare", "alarge", "alegar", "galera", "laager"], ["alisier", "israeli", "resilia"], ["annuloid", "uninodal"], ["asweat", "awaste"], ["barcoo", "baroco"], ["befathered", "featherbed"], ["bop", "pob"], ["brasiletto", "strobilate"], ["brave", "breva"], ["chloralosed", "cholralosed"], ["chomer", "chrome"], ["deknight", "knighted"], ["dessus", "sudses"], ["ethologist", "theologist"], ["germanification", "remagnification"], ["glycocin", "glyconic"], ["gundi", "undig"], ["gynospore", "sporogeny"], ["lamellae", "malellae"], ["lookout", "outlook"], ["mopla", "palmo"], ["ory", "roy"], ["peloric", "proclei"], ["peregrinus", "reperusing"], ["proletariat", "reptatorial"], ["reassortment", "remonstrates"], ["reelections", "reselection"], ["reshowing", "showering"]], "source_dataset": "group_anagrams", "source_index": 18, "words": ["gynospore", "sporogeny", "lamellae", "malellae", "reptatorial", "proletariat", "academes", "madecase", "chomer", "chrome", "barcoo", "baroco", "reshowing", "showering", "peloric", "proclei", "brasiletto", "strobilate", "cholralosed", "chloralosed", "uninodal", "annuloid", "brave", "breva", "glycocin", "glyconic", "resilia", "israeli", "alisier", "roy", "ory", "bop", "pob", "remagnification", "germanification", "adherents", "neatherds", "reassortment", "remonstrates", "mopla", "palmo", "gundi", "undig", "sudses", "dessus", "reselection", "reelections", "theologist", "ethologist", "reperusing", "peregrinus", "awaste", "asweat", "deknight", "knighted", "lookout", "outlook", "featherbed", "befathered", "laager", "alegar", "galera", "alarge", "aglare"]}
Keep all numbers larger than 16.10 in this list: ['-403.9771', '230.422', '243.40', '155.5165', '-99.2882', '-311.3019', '-28.8428', '-490.60', '223.119', '-75.5878', '-93.36', '-325.289', '-134.92', '273.02', '-355.856', '-354.2333', '374.147', '213.19', '125.2681', '245.202', '412.2959', '-417.0679', '-498.428', '175.68', '-67.71', '-88.78', '177.9224', '-369.0449', '295.955', '305.2166', '-197.2171', '52.1092', '-443.307', '-342.56', '-477.49', '-56.440', '480.19', '-200.065', '192.5444', '-106.267', '-374.13', '291.301', '-18.219', '-389.55', '79.164', '-172.87', '390.320', '440.6192', '-277.89', '-21.85', '65.40', '238.94', '-8.601', '287.15', '-119.097', '-427.44', '40.323', '275.792', '76.882', '-154.79', '175.54', '-92.283'] Return the new list in the same format.
['230.422', '243.40', '155.5165', '223.119', '273.02', '374.147', '213.19', '125.2681', '245.202', '412.2959', '175.68', '177.9224', '295.955', '305.2166', '52.1092', '480.19', '192.5444', '291.301', '79.164', '390.320', '440.6192', '65.40', '238.94', '287.15', '40.323', '275.792', '76.882', '175.54']
number_filtering
{"difficulty": {"decimals": [2, 4], "numbers": [50, 100], "value": [-500, 500]}, "filter_value": "16.10", "numbers": 62, "operation": "keep_larger", "original_numbers": ["-403.9771", "230.422", "243.40", "155.5165", "-99.2882", "-311.3019", "-28.8428", "-490.60", "223.119", "-75.5878", "-93.36", "-325.289", "-134.92", "273.02", "-355.856", "-354.2333", "374.147", "213.19", "125.2681", "245.202", "412.2959", "-417.0679", "-498.428", "175.68", "-67.71", "-88.78", "177.9224", "-369.0449", "295.955", "305.2166", "-197.2171", "52.1092", "-443.307", "-342.56", "-477.49", "-56.440", "480.19", "-200.065", "192.5444", "-106.267", "-374.13", "291.301", "-18.219", "-389.55", "79.164", "-172.87", "390.320", "440.6192", "-277.89", "-21.85", "65.40", "238.94", "-8.601", "287.15", "-119.097", "-427.44", "40.323", "275.792", "76.882", "-154.79", "175.54", "-92.283"], "result": ["230.422", "243.40", "155.5165", "223.119", "273.02", "374.147", "213.19", "125.2681", "245.202", "412.2959", "175.68", "177.9224", "295.955", "305.2166", "52.1092", "480.19", "192.5444", "291.301", "79.164", "390.320", "440.6192", "65.40", "238.94", "287.15", "40.323", "275.792", "76.882", "175.54"], "source_dataset": "number_filtering", "source_index": 19}
Transform the word ladder 'SHRUB' to 'NESTS' by changing one letter at a time. Provide your answer as a comma-separated sequence of uppercase letters without spaces. Each step must be a valid English word.
SHRUB,SCRUB,SCRUM,STRUM,STRUT,STOUT,STOUP,STOMP,STAMP,SCAMP,SCAMS,SEAMS,TEAMS,TEATS,TESTS,NESTS
word_ladder
{"chain_length": 16, "difficulty": {"word_length": [3, 5]}, "end_word": "NESTS", "source_dataset": "word_ladder", "source_index": 20, "start_word": "SHRUB", "word_length": 5}
For the following matrix: 5 9 2 3 3 7 2 1 5 0 3 1 7 4 2 6 7 5 9 1 6 1 4 7 0 5 7 1 0 7 1 1 3 2 6 4 5 3 5 7 4 2 1 0 9 8 5 0 2 5 3 4 5 0 8 2 8 9 8 0 9 8 5 0 6 1 0 0 3 6 7 7 3 3 5 3 8 8 3 2 7 1 8 0 5 8 2 7 9 1 2 9 7 3 1 2 4 6 4 7 3 3 4 4 3 2 1 0 9 4 7 0 1 0 6 4 5 5 6 8 4 4 8 4 4 2 5 4 2 2 3 8 1 6 9 8 5 8 2 9 7 7 8 1 7 7 2 7 7 6 8 4 9 1 2 1 6 2 5 3 3 4 7 8 1 4 7 3 0 5 6 4 5 8 1 3 3 7 3 5 5 8 7 7 5 8 1 6 9 9 9 3 6 2 1 5 3 5 3 6 2 8 0 9 0 5 4 0 1 5 7 9 4 3 8 6 3 5 2 5 6 8 9 5 7 7 5 4 8 3 1 6 2 9 5 0 7 2 3 9 2 6 1 3 8 9 7 8 0 3 4 3 4 6 2 3 3 1 5 1 9 4 9 6 8 5 5 6 4 7 1 4 5 5 2 7 1 0 9 9 2 8 1 8 9 8 6 7 6 7 5 7 5 4 9 9 1 3 6 8 1 4 9 8 4 7 2 2 5 9 2 6 3 2 2 4 2 0 5 4 5 5 5 8 1 1 4 4 4 4 5 2 4 8 7 9 9 5 9 1 1 3 6 9 2 2 2 7 1 2 7 6 0 4 4 9 7 8 3 2 8 8 0 0 3 0 2 7 5 3 7 1 9 6 5 3 9 8 6 2 7 6 8 1 7 1 8 3 0 2 5 4 9 7 1 2 7 3 4 9 5 9 6 0 4 0 5 3 6 7 4 4 2 9 9 6 2 1 5 3 9 2 2 0 2 4 5 8 1 3 3 1 8 5 2 3 1 2 5 3 5 5 4 7 9 9 1 4 6 3 4 1 5 0 2 3 6 5 3 9 1 6 9 3 0 9 2 4 3 5 2 3 0 3 7 7 2 9 2 6 9 0 0 4 9 9 4 5 7 6 8 6 9 8 7 1 6 0 5 9 4 2 8 4 4 0 2 4 6 9 6 9 5 6 8 0 2 6 2 1 3 7 5 8 5 5 3 7 9 2 0 2 8 3 2 5 2 5 1 6 4 6 6 9 5 1 9 4 2 2 4 2 8 6 1 7 2 1 7 6 6 0 7 9 9 7 0 8 1 3 7 1 8 3 6 2 9 6 4 5 8 9 4 2 7 3 0 6 2 8 9 2 6 4 8 2 3 7 9 7 3 6 5 7 7 1 2 8 9 2 2 3 2 8 3 8 7 9 6 6 3 5 2 4 5 7 4 2 0 3 7 9 3 0 4 4 3 9 0 5 3 1 3 5 0 6 7 6 5 9 1 2 8 0 1 3 8 8 4 5 2 4 4 2 5 4 8 7 4 0 2 0 6 9 7 5 9 8 8 3 6 9 4 3 6 1 0 7 3 6 7 2 6 9 2 7 5 7 5 8 8 0 2 8 0 6 3 5 9 9 1 7 5 0 1 4 7 7 7 9 2 0 3 5 8 8 5 1 4 4 5 7 5 1 0 4 7 3 5 0 8 8 6 0 5 5 2 1 3 2 9 5 8 1 1 9 6 9 2 5 3 4 5 1 0 7 0 5 2 9 9 9 2 4 7 8 3 8 1 8 6 5 7 7 4 2 2 6 7 1 8 2 3 7 4 5 0 7 7 1 4 8 4 9 8 1 9 7 1 5 8 0 3 5 5 5 4 8 1 4 0 2 9 6 1 8 5 1 8 9 8 1 4 7 9 1 8 7 6 3 4 2 4 9 9 2 4 3 9 0 2 9 4 5 7 3 1 0 9 2 3 7 5 1 4 6 3 4 5 7 4 0 8 9 9 1 2 2 8 4 9 7 5 2 5 0 7 7 5 5 1 5 1 0 6 1 1 7 9 7 6 8 3 4 8 2 0 5 0 6 4 2 5 4 5 5 8 2 9 0 0 2 2 0 9 9 5 3 1 9 9 8 1 9 1 1 5 1 6 3 5 1 3 0 8 3 5 9 3 1 2 8 0 7 8 8 0 5 2 9 3 8 7 5 3 2 6 9 3 8 0 3 0 6 3 9 5 3 3 7 2 3 2 6 6 9 1 3 2 9 1 2 3 2 2 4 9 9 9 2 0 4 9 6 1 8 9 7 5 8 2 3 8 9 6 5 0 0 0 2 5 9 5 2 5 6 7 3 6 5 4 4 0 0 6 3 0 9 5 6 0 3 4 5 5 4 3 0 1 1 3 7 2 0 1 2 1 3 0 0 6 6 8 1 5 8 6 4 7 8 1 2 3 7 3 8 3 4 1 7 8 0 4 1 7 8 4 0 9 8 3 5 6 8 6 4 4 9 6 0 5 5 0 5 3 5 5 7 0 3 7 3 1 9 9 9 7 5 0 6 4 6 8 8 3 2 0 2 5 8 2 Perform the following series of operations in order: - Identity transformation, i.e. no change - Rotate the matrix 90 degrees - Remove every 27-th column (1-indexed) - Horizontally mirror the matrix - Remove every 10-th column (1-indexed)
2 5 2 9 3 1 1 0 1 8 0 4 4 7 1 2 4 1 7 6 5 9 1 1 8 5 8 3 7 8 6 1 1 1 8 0 8 4 2 2 5 0 2 8 2 2 4 2 2 2 8 3 5 8 3 3 0 9 6 3 4 5 8 2 5 4 9 4 9 5 1 9 1 6 6 1 3 5 2 9 1 2 3 1 0 7 5 3 5 5 3 9 6 4 0 4 7 5 7 1 3 9 5 4 0 0 1 8 0 8 1 5 5 7 7 4 6 8 6 8 3 2 2 2 4 3 9 4 3 6 2 4 0 5 8 9 5 4 5 4 5 8 6 5 4 2 9 0 2 2 6 8 9 8 3 2 3 8 3 7 3 9 1 9 3 0 7 8 9 4 6 4 6 2 2 7 5 4 9 6 7 3 8 7 4 9 9 1 5 2 0 1 2 3 7 6 1 9 1 2 9 4 5 5 6 7 7 1 8 1 5 8 6 3 5 0 8 5 9 1 8 9 5 5 9 9 6 8 8 7 1 7 6 1 6 4 5 1 2 5 7 9 5 7 6 0 3 2 2 0 3 3 3 9 6 7 8 2 3 7 4 0 4 6 3 9 7 3 1 5 2 8 8 6 5 6 5 5 1 4 9 5 5 7 0 0 6 8 3 9 5 9 0 4 7 4 7 2 2 3 2 1 6 1 1 1 4 9 7 7 0 1 0 7 0 4 7 0 5 2 9 4 6 1 3 8 3 7 3 2 9 8 9 8 7 1 1 7 5 1 6 0 8 2 2 9 1 1 3 9 2 1 8 8 2 6 5 6 1 6 8 8 6 5 7 4 5 2 3 2 5 9 8 5 7 5 2 7 2 9 0 9 9 3 5 5 5 7 0 0 9 3 9 9 9 0 7 4 9 8 0 6 9 3 0 6 5 9 9 1 1 2 5 7 5 7 9 8 0 9 2 0 9 2 4 8 1 7 8 1 2 8 1 2 7 9 3 5 3 9 8 4 9 3 3 9 5 9 4 4 8 5 6 6 2 8 9 6 4 4 8 9 3 3 7 2 9 1 1 7 6 4 0 2 8 3 4 3 3 0 1 0 7 7 3 4 4 4 2 6 3 8 0 6 3 3 0 2 8 8 2 6 1 0 4 5 7 7 3 5 6 7 2 5 6 8 3 5 8 1 7 2 0 2 8 5 2 7 7 2 9 3 7 9 5 4 4 6 5 7 4 3 1 8 9 9 3 1 4 3 7 5 1 8 7 9 6 1 5 9 5 9 1 3 4 5 3 4 8 9 8 5 0 8 4 2 0 4 9 1 0 7 3 3 6 7 8 9 9 5 4 7 4 9 5 6 2 7 7 7 5 1 8 5 9 9 5 7 8 5 3 0 5 4 9 0 4 6 3 7 4 1 8 6 5 4 6 9 2 2 8 7 4 7 8 0 7 6 7 0 7 4 4 7 0 5 6 8 0 2 5 6 3 2 1 4 0 4 7 4 9 9 9 6 3 0 4 0 1 6 8 1 5 3 5 4 3 8 7 3 3 6 4 1 3 1 5 3 7 7 1 9 5 6 1 8 7 0 0 2 4 7 5 5 6 1 9 0 7 8 2 0 7 4 3 1 2 6 5 9 8 9 9 4 3 2 3 1 0 1 5 9 5 5 5 9 8 5 9 4 2 2 6 2 3 5 5 8 8 5 7 4 5 3 5 8 2 6 3 0 4 8 1 7 6 0 8 7 2 9 5 9 5 1 3 0 4 5 2 0 5 6 5 6 8 2 3 1 7 1 0 3 4 1 0 2 2 4 5 8 1 9 1 2 0 5 0 6 9 2 0 8 6 5 6 9 2 9 6 6 8 7 1 3 4 2 6 0 8 4 5 1 6 0 5 3 3 4 4 8 2 9 0 7 2 8 6 7 3 7 5 9 2 8 7 4 8 2 9 0 2 2 1 3 1 1 2 5 4 3 9 2 5 3 2 2 0 9 9 2 4 8 9 7 4 3 0 7 5 8 5 6 4 3 7 0 8 4 9 0 5 1 2 0 3 6 3 4 0 3 4 1 0 3 3 6 7 9 7 6 8 2 2 2 6 3 8 7 4 1 2 3 3 4 1 3 6 2 0 3 6 7 3 2 7 0 4 4 6 2 9 2 1 9 2 7 7 5 5 8 2 2 8 1 5 5 1 9 2 0 5 8 5 7 0 4 6 5 3 4 2 2 0 3 2 6 4 9 6 0 6 9 5 7 9 4 6 2 2 5 3 9 4 3 3 5 3 5 5 5 6 5 7 5
manipulate_matrix
{"cols": 39, "difficulty": {"cols": [25, 50], "num_transforms": [3, 10], "rows": [25, 50]}, "matrix": [[5, 9, 2, 3, 3, 7, 2, 1, 5, 0, 3, 1, 7, 4, 2, 6, 7, 5, 9, 1, 6, 1, 4, 7, 0, 5, 7, 1, 0, 7, 1, 1, 3, 2, 6, 4, 5, 3, 5], [7, 4, 2, 1, 0, 9, 8, 5, 0, 2, 5, 3, 4, 5, 0, 8, 2, 8, 9, 8, 0, 9, 8, 5, 0, 6, 1, 0, 0, 3, 6, 7, 7, 3, 3, 5, 3, 8, 8], [3, 2, 7, 1, 8, 0, 5, 8, 2, 7, 9, 1, 2, 9, 7, 3, 1, 2, 4, 6, 4, 7, 3, 3, 4, 4, 3, 2, 1, 0, 9, 4, 7, 0, 1, 0, 6, 4, 5], [5, 6, 8, 4, 4, 8, 4, 4, 2, 5, 4, 2, 2, 3, 8, 1, 6, 9, 8, 5, 8, 2, 9, 7, 7, 8, 1, 7, 7, 2, 7, 7, 6, 8, 4, 9, 1, 2, 1], [6, 2, 5, 3, 3, 4, 7, 8, 1, 4, 7, 3, 0, 5, 6, 4, 5, 8, 1, 3, 3, 7, 3, 5, 5, 8, 7, 7, 5, 8, 1, 6, 9, 9, 9, 3, 6, 2, 1], [5, 3, 5, 3, 6, 2, 8, 0, 9, 0, 5, 4, 0, 1, 5, 7, 9, 4, 3, 8, 6, 3, 5, 2, 5, 6, 8, 9, 5, 7, 7, 5, 4, 8, 3, 1, 6, 2, 9], [5, 0, 7, 2, 3, 9, 2, 6, 1, 3, 8, 9, 7, 8, 0, 3, 4, 3, 4, 6, 2, 3, 3, 1, 5, 1, 9, 4, 9, 6, 8, 5, 5, 6, 4, 7, 1, 4, 5], [5, 2, 7, 1, 0, 9, 9, 2, 8, 1, 8, 9, 8, 6, 7, 6, 7, 5, 7, 5, 4, 9, 9, 1, 3, 6, 8, 1, 4, 9, 8, 4, 7, 2, 2, 5, 9, 2, 6], [3, 2, 2, 4, 2, 0, 5, 4, 5, 5, 5, 8, 1, 1, 4, 4, 4, 4, 5, 2, 4, 8, 7, 9, 9, 5, 9, 1, 1, 3, 6, 9, 2, 2, 2, 7, 1, 2, 7], [6, 0, 4, 4, 9, 7, 8, 3, 2, 8, 8, 0, 0, 3, 0, 2, 7, 5, 3, 7, 1, 9, 6, 5, 3, 9, 8, 6, 2, 7, 6, 8, 1, 7, 1, 8, 3, 0, 2], [5, 4, 9, 7, 1, 2, 7, 3, 4, 9, 5, 9, 6, 0, 4, 0, 5, 3, 6, 7, 4, 4, 2, 9, 9, 6, 2, 1, 5, 3, 9, 2, 2, 0, 2, 4, 5, 8, 1], [3, 3, 1, 8, 5, 2, 3, 1, 2, 5, 3, 5, 5, 4, 7, 9, 9, 1, 4, 6, 3, 4, 1, 5, 0, 2, 3, 6, 5, 3, 9, 1, 6, 9, 3, 0, 9, 2, 4], [3, 5, 2, 3, 0, 3, 7, 7, 2, 9, 2, 6, 9, 0, 0, 4, 9, 9, 4, 5, 7, 6, 8, 6, 9, 8, 7, 1, 6, 0, 5, 9, 4, 2, 8, 4, 4, 0, 2], [4, 6, 9, 6, 9, 5, 6, 8, 0, 2, 6, 2, 1, 3, 7, 5, 8, 5, 5, 3, 7, 9, 2, 0, 2, 8, 3, 2, 5, 2, 5, 1, 6, 4, 6, 6, 9, 5, 1], [9, 4, 2, 2, 4, 2, 8, 6, 1, 7, 2, 1, 7, 6, 6, 0, 7, 9, 9, 7, 0, 8, 1, 3, 7, 1, 8, 3, 6, 2, 9, 6, 4, 5, 8, 9, 4, 2, 7], [3, 0, 6, 2, 8, 9, 2, 6, 4, 8, 2, 3, 7, 9, 7, 3, 6, 5, 7, 7, 1, 2, 8, 9, 2, 2, 3, 2, 8, 3, 8, 7, 9, 6, 6, 3, 5, 2, 4], [5, 7, 4, 2, 0, 3, 7, 9, 3, 0, 4, 4, 3, 9, 0, 5, 3, 1, 3, 5, 0, 6, 7, 6, 5, 9, 1, 2, 8, 0, 1, 3, 8, 8, 4, 5, 2, 4, 4], [2, 5, 4, 8, 7, 4, 0, 2, 0, 6, 9, 7, 5, 9, 8, 8, 3, 6, 9, 4, 3, 6, 1, 0, 7, 3, 6, 7, 2, 6, 9, 2, 7, 5, 7, 5, 8, 8, 0], [2, 8, 0, 6, 3, 5, 9, 9, 1, 7, 5, 0, 1, 4, 7, 7, 7, 9, 2, 0, 3, 5, 8, 8, 5, 1, 4, 4, 5, 7, 5, 1, 0, 4, 7, 3, 5, 0, 8], [8, 6, 0, 5, 5, 2, 1, 3, 2, 9, 5, 8, 1, 1, 9, 6, 9, 2, 5, 3, 4, 5, 1, 0, 7, 0, 5, 2, 9, 9, 9, 2, 4, 7, 8, 3, 8, 1, 8], [6, 5, 7, 7, 4, 2, 2, 6, 7, 1, 8, 2, 3, 7, 4, 5, 0, 7, 7, 1, 4, 8, 4, 9, 8, 1, 9, 7, 1, 5, 8, 0, 3, 5, 5, 5, 4, 8, 1], [4, 0, 2, 9, 6, 1, 8, 5, 1, 8, 9, 8, 1, 4, 7, 9, 1, 8, 7, 6, 3, 4, 2, 4, 9, 9, 2, 4, 3, 9, 0, 2, 9, 4, 5, 7, 3, 1, 0], [9, 2, 3, 7, 5, 1, 4, 6, 3, 4, 5, 7, 4, 0, 8, 9, 9, 1, 2, 2, 8, 4, 9, 7, 5, 2, 5, 0, 7, 7, 5, 5, 1, 5, 1, 0, 6, 1, 1], [7, 9, 7, 6, 8, 3, 4, 8, 2, 0, 5, 0, 6, 4, 2, 5, 4, 5, 5, 8, 2, 9, 0, 0, 2, 2, 0, 9, 9, 5, 3, 1, 9, 9, 8, 1, 9, 1, 1], [5, 1, 6, 3, 5, 1, 3, 0, 8, 3, 5, 9, 3, 1, 2, 8, 0, 7, 8, 8, 0, 5, 2, 9, 3, 8, 7, 5, 3, 2, 6, 9, 3, 8, 0, 3, 0, 6, 3], [9, 5, 3, 3, 7, 2, 3, 2, 6, 6, 9, 1, 3, 2, 9, 1, 2, 3, 2, 2, 4, 9, 9, 9, 2, 0, 4, 9, 6, 1, 8, 9, 7, 5, 8, 2, 3, 8, 9], [6, 5, 0, 0, 0, 2, 5, 9, 5, 2, 5, 6, 7, 3, 6, 5, 4, 4, 0, 0, 6, 3, 0, 9, 5, 6, 0, 3, 4, 5, 5, 4, 3, 0, 1, 1, 3, 7, 2], [0, 1, 2, 1, 3, 0, 0, 6, 6, 8, 1, 5, 8, 6, 4, 7, 8, 1, 2, 3, 7, 3, 8, 3, 4, 1, 7, 8, 0, 4, 1, 7, 8, 4, 0, 9, 8, 3, 5], [6, 8, 6, 4, 4, 9, 6, 0, 5, 5, 0, 5, 3, 5, 5, 7, 0, 3, 7, 3, 1, 9, 9, 9, 7, 5, 0, 6, 4, 6, 8, 8, 3, 2, 0, 2, 5, 8, 2]], "num_transforms": 4, "operations": [{"degrees": "90", "instruction": "- Rotate the matrix 90 degrees", "transform": "rotate"}, {"instruction": "- Remove every 27-th column (1-indexed)", "n": 27, "transform": "remove_every_nth_col"}, {"instruction": "- Horizontally mirror the matrix", "transform": "hmirror"}, {"instruction": "- Remove every 10-th column (1-indexed)", "n": 10, "transform": "remove_every_nth_col"}], "rows": 29, "solution": [[2, 5, 2, 9, 3, 1, 1, 0, 1, 8, 0, 4, 4, 7, 1, 2, 4, 1, 7, 6, 5, 9, 1, 1, 8, 5], [8, 3, 7, 8, 6, 1, 1, 1, 8, 0, 8, 4, 2, 2, 5, 0, 2, 8, 2, 2, 4, 2, 2, 2, 8, 3], [5, 8, 3, 3, 0, 9, 6, 3, 4, 5, 8, 2, 5, 4, 9, 4, 9, 5, 1, 9, 1, 6, 6, 1, 3, 5], [2, 9, 1, 2, 3, 1, 0, 7, 5, 3, 5, 5, 3, 9, 6, 4, 0, 4, 7, 5, 7, 1, 3, 9, 5, 4], [0, 0, 1, 8, 0, 8, 1, 5, 5, 7, 7, 4, 6, 8, 6, 8, 3, 2, 2, 2, 4, 3, 9, 4, 3, 6], [2, 4, 0, 5, 8, 9, 5, 4, 5, 4, 5, 8, 6, 5, 4, 2, 9, 0, 2, 2, 6, 8, 9, 8, 3, 2], [3, 8, 3, 7, 3, 9, 1, 9, 3, 0, 7, 8, 9, 4, 6, 4, 6, 2, 2, 7, 5, 4, 9, 6, 7, 3], [8, 7, 4, 9, 9, 1, 5, 2, 0, 1, 2, 3, 7, 6, 1, 9, 1, 2, 9, 4, 5, 5, 6, 7, 7, 1], [8, 1, 5, 8, 6, 3, 5, 0, 8, 5, 9, 1, 8, 9, 5, 5, 9, 9, 6, 8, 8, 7, 1, 7, 6, 1], [6, 4, 5, 1, 2, 5, 7, 9, 5, 7, 6, 0, 3, 2, 2, 0, 3, 3, 3, 9, 6, 7, 8, 2, 3, 7], [4, 0, 4, 6, 3, 9, 7, 3, 1, 5, 2, 8, 8, 6, 5, 6, 5, 5, 1, 4, 9, 5, 5, 7, 0, 0], [6, 8, 3, 9, 5, 9, 0, 4, 7, 4, 7, 2, 2, 3, 2, 1, 6, 1, 1, 1, 4, 9, 7, 7, 0, 1], [0, 7, 0, 4, 7, 0, 5, 2, 9, 4, 6, 1, 3, 8, 3, 7, 3, 2, 9, 8, 9, 8, 7, 1, 1, 7], [5, 1, 6, 0, 8, 2, 2, 9, 1, 1, 3, 9, 2, 1, 8, 8, 2, 6, 5, 6, 1, 6, 8, 8, 6, 5], [7, 4, 5, 2, 3, 2, 5, 9, 8, 5, 7, 5, 2, 7, 2, 9, 0, 9, 9, 3, 5, 5, 5, 7, 0, 0], [9, 3, 9, 9, 9, 0, 7, 4, 9, 8, 0, 6, 9, 3, 0, 6, 5, 9, 9, 1, 1, 2, 5, 7, 5, 7], [9, 8, 0, 9, 2, 0, 9, 2, 4, 8, 1, 7, 8, 1, 2, 8, 1, 2, 7, 9, 3, 5, 3, 9, 8, 4], [9, 3, 3, 9, 5, 9, 4, 4, 8, 5, 6, 6, 2, 8, 9, 6, 4, 4, 8, 9, 3, 3, 7, 2, 9, 1], [1, 7, 6, 4, 0, 2, 8, 3, 4, 3, 3, 0, 1, 0, 7, 7, 3, 4, 4, 4, 2, 6, 3, 8, 0, 6], [3, 3, 0, 2, 8, 8, 2, 6, 1, 0, 4, 5, 7, 7, 3, 5, 6, 7, 2, 5, 6, 8, 3, 5, 8, 1], [7, 2, 0, 2, 8, 5, 2, 7, 7, 2, 9, 3, 7, 9, 5, 4, 4, 6, 5, 7, 4, 3, 1, 8, 9, 9], [3, 1, 4, 3, 7, 5, 1, 8, 7, 9, 6, 1, 5, 9, 5, 9, 1, 3, 4, 5, 3, 4, 8, 9, 8, 5], [0, 8, 4, 2, 0, 4, 9, 1, 0, 7, 3, 3, 6, 7, 8, 9, 9, 5, 4, 7, 4, 9, 5, 6, 2, 7], [7, 7, 5, 1, 8, 5, 9, 9, 5, 7, 8, 5, 3, 0, 5, 4, 9, 0, 4, 6, 3, 7, 4, 1, 8, 6], [5, 4, 6, 9, 2, 2, 8, 7, 4, 7, 8, 0, 7, 6, 7, 0, 7, 4, 4, 7, 0, 5, 6, 8, 0, 2], [5, 6, 3, 2, 1, 4, 0, 4, 7, 4, 9, 9, 9, 6, 3, 0, 4, 0, 1, 6, 8, 1, 5, 3, 5, 4], [3, 8, 7, 3, 3, 6, 4, 1, 3, 1, 5, 3, 7, 7, 1, 9, 5, 6, 1, 8, 7, 0, 0, 2, 4, 7], [5, 5, 6, 1, 9, 0, 7, 8, 2, 0, 7, 4, 3, 1, 2, 6, 5, 9, 8, 9, 9, 4, 3, 2, 3, 1], [0, 1, 5, 9, 5, 5, 5, 9, 8, 5, 9, 4, 2, 2, 6, 2, 3, 5, 5, 8, 8, 5, 7, 4, 5, 3], [5, 8, 2, 6, 3, 0, 4, 8, 1, 7, 6, 0, 8, 7, 2, 9, 5, 9, 5, 1, 3, 0, 4, 5, 2, 0], [5, 6, 5, 6, 8, 2, 3, 1, 7, 1, 0, 3, 4, 1, 0, 2, 2, 4, 5, 8, 1, 9, 1, 2, 0, 5], [0, 6, 9, 2, 0, 8, 6, 5, 6, 9, 2, 9, 6, 6, 8, 7, 1, 3, 4, 2, 6, 0, 8, 4, 5, 1], [6, 0, 5, 3, 3, 4, 4, 8, 2, 9, 0, 7, 2, 8, 6, 7, 3, 7, 5, 9, 2, 8, 7, 4, 8, 2], [9, 0, 2, 2, 1, 3, 1, 1, 2, 5, 4, 3, 9, 2, 5, 3, 2, 2, 0, 9, 9, 2, 4, 8, 9, 7], [4, 3, 0, 7, 5, 8, 5, 6, 4, 3, 7, 0, 8, 4, 9, 0, 5, 1, 2, 0, 3, 6, 3, 4, 0, 3], [4, 1, 0, 3, 3, 6, 7, 9, 7, 6, 8, 2, 2, 2, 6, 3, 8, 7, 4, 1, 2, 3, 3, 4, 1, 3], [6, 2, 0, 3, 6, 7, 3, 2, 7, 0, 4, 4, 6, 2, 9, 2, 1, 9, 2, 7, 7, 5, 5, 8, 2, 2], [8, 1, 5, 5, 1, 9, 2, 0, 5, 8, 5, 7, 0, 4, 6, 5, 3, 4, 2, 2, 0, 3, 2, 6, 4, 9], [6, 0, 6, 9, 5, 7, 9, 4, 6, 2, 2, 5, 3, 9, 4, 3, 3, 5, 3, 5, 5, 5, 6, 5, 7, 5]], "source_dataset": "manipulate_matrix", "source_index": 21}
Remove all numbers smaller than 369.369 in this list: ['339.623', '57.971', '-21.08', '-340.591', '172.8365', '-498.567', '-211.322', '-278.4074', '-367.76', '-288.291', '375.2214', '461.0461', '-168.963', '389.59', '150.328', '-254.649', '-482.1436', '231.550', '-150.659', '240.515', '85.1706', '278.73', '-438.041', '163.596', '368.10', '419.89', '-37.57', '-311.13', '123.910', '-118.22', '-481.3379', '-327.09', '349.007', '-111.10', '83.00', '189.445', '402.902', '-194.316', '431.24', '-73.27', '-402.7981', '242.6943', '-27.49', '-146.641', '385.7340', '293.517', '346.709', '7.478', '456.466', '361.661', '432.291', '184.6771', '257.99', '493.7975', '203.3898', '-458.2242', '-424.728', '-444.855', '13.44', '183.85', '227.43', '495.586', '-189.0133', '289.57', '496.01', '-267.4610', '-154.7377', '-391.455', '253.846', '-8.738', '-378.7643', '-344.95', '489.1928', '70.213', '-367.34', '128.4663', '121.345', '-260.4704', '443.16', '-196.75', '-11.65', '-311.75'] Return the new list in the same format.
['375.2214', '461.0461', '389.59', '419.89', '402.902', '431.24', '385.7340', '456.466', '432.291', '493.7975', '495.586', '496.01', '489.1928', '443.16']
number_filtering
{"difficulty": {"decimals": [2, 4], "numbers": [50, 100], "value": [-500, 500]}, "filter_value": "369.369", "numbers": 82, "operation": "remove_smaller", "original_numbers": ["339.623", "57.971", "-21.08", "-340.591", "172.8365", "-498.567", "-211.322", "-278.4074", "-367.76", "-288.291", "375.2214", "461.0461", "-168.963", "389.59", "150.328", "-254.649", "-482.1436", "231.550", "-150.659", "240.515", "85.1706", "278.73", "-438.041", "163.596", "368.10", "419.89", "-37.57", "-311.13", "123.910", "-118.22", "-481.3379", "-327.09", "349.007", "-111.10", "83.00", "189.445", "402.902", "-194.316", "431.24", "-73.27", "-402.7981", "242.6943", "-27.49", "-146.641", "385.7340", "293.517", "346.709", "7.478", "456.466", "361.661", "432.291", "184.6771", "257.99", "493.7975", "203.3898", "-458.2242", "-424.728", "-444.855", "13.44", "183.85", "227.43", "495.586", "-189.0133", "289.57", "496.01", "-267.4610", "-154.7377", "-391.455", "253.846", "-8.738", "-378.7643", "-344.95", "489.1928", "70.213", "-367.34", "128.4663", "121.345", "-260.4704", "443.16", "-196.75", "-11.65", "-311.75"], "result": ["375.2214", "461.0461", "389.59", "419.89", "402.902", "431.24", "385.7340", "456.466", "432.291", "493.7975", "495.586", "496.01", "489.1928", "443.16"], "source_dataset": "number_filtering", "source_index": 22}
Your task is to unsramble words in a sentence. For each word in a sentence, the letter may have been randomly shuffled. Your task is to unscramble the words. The order of the words in the sentence is preserved. Moreover, the style of the sentence is preserved (i.e. punctuation, capitalization, new lines, etc.). Your output should be a sentence with the words unscrambled. Now, unscramble these words: coepis vrodiipng ascces iitdrgbstuni Pcojret bGteguern clecrionte owkrs vropddei ryaolty srgso tforips eerivd Prjeoct uGbenretg wsrok calcdlutea usngi method alayrde aclcleatu lcplipebaa taxes nower Ptojerc nrueGbetg dkaetmarr dgaeer deanto riyaltsoe rndue paarhparg Prjceot
copies providing access distributing Project Gutenberg electronic works provided royalty gross profits derive Project Gutenberg works calculated using method already calculate applicable taxes owner Project Gutenberg trademark agreed donate royalties under paragraph Project
letter_jumble
{"corruption_level": 0.41818217383751255, "difficulty": {"corruption_level": [0.3, 0.6], "word_len": [5, 30], "words": [25, 50]}, "num_words": 33, "original_words": ["copies", "providing", "access", "distributing", "Project", "Gutenberg", "electronic", "works", "provided", "royalty", "gross", "profits", "derive", "Project", "Gutenberg", "works", "calculated", "using", "method", "already", "calculate", "applicable", "taxes", "owner", "Project", "Gutenberg", "trademark", "agreed", "donate", "royalties", "under", "paragraph", "Project"], "scrambled_words": ["coepis", "vrodiipng", "ascces", "iitdrgbstuni", "Pcojret", "bGteguern", "clecrionte", "owkrs", "vropddei", "ryaolty", "srgso", "tforips", "eerivd", "Prjeoct", "uGbenretg", "wsrok", "calcdlutea", "usngi", "method", "alayrde", "aclcleatu", "lcplipebaa", "taxes", "nower", "Ptojerc", "nrueGbetg", "dkaetmarr", "dgaeer", "deanto", "riyaltsoe", "rndue", "paarhparg", "Prjceot"], "source_dataset": "letter_jumble", "source_index": 23}
Given a binary string, return the minimum number of character swaps to make it alternating, or -1 if it is impossible. The string is called alternating if no two adjacent characters are equal. For example, the strings "010" and "1010" are alternating, while the string "0100" is not. Any two characters may be swapped, even if they are not adjacent. Now, determine the minimum number of swaps to make the following binary string alternating: 0011111110011110010010010111011000010001001010110110000101011101011110001000011111000000111011000100000011001111111000111101100001000010111011101100110110001011001001011011101101000101110100010100100011011010111110110101100101100111000010001010111100100001111011111101010010101010011000010011100000010011100111001000100001001011000001100111110000011001111111101101101111000110111010010001000000011011
100
binary_alternation
{"difficulty": {"n": [50, 500]}, "n": 400, "solution": 100, "solvable": true, "source_dataset": "binary_alternation", "source_index": 24, "string": "0011111110011110010010010111011000010001001010110110000101011101011110001000011111000000111011000100000011001111111000111101100001000010111011101100110110001011001001011011101101000101110100010100100011011010111110110101100101100111000010001010111100100001111011111101010010101010011000010011100000010011100111001000100001001011000001100111110000011001111111101101101111000110111010010001000000011011"}
Given a binary string, return the minimum number of character swaps to make it alternating, or -1 if it is impossible. The string is called alternating if no two adjacent characters are equal. For example, the strings "010" and "1010" are alternating, while the string "0100" is not. Any two characters may be swapped, even if they are not adjacent. Now, determine the minimum number of swaps to make the following binary string alternating: 00100001001010001000110001111110000001011000111101011101001000011110111010101011011011100110101111001000111100
24
binary_alternation
{"difficulty": {"n": [50, 500]}, "n": 110, "solution": 24, "solvable": true, "source_dataset": "binary_alternation", "source_index": 25, "string": "00100001001010001000110001111110000001011000111101011101001000011110111010101011011011100110101111001000111100"}
Spell this word backward (example: sun -> nus): untainting
gnitniatnu
spell_backward
{"difficulty": {"word_len": [5, 20]}, "source_dataset": "spell_backward", "source_index": 26, "word": "untainting", "word_len": 10}
You are given an n x n grid where each cell can have one of three values: - 0 representing an empty cell - 1 representing a fresh orange - 2 representing a rotten orange Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten. Your task is determine the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1. Now, determine the minimum number of minutes that must elapse until no cell in the grid below has a fresh orange: 0 1 1 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 0 2 1 1 2 1 1 2 2 2 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 2 1 1 1 1 1 1 2 0 0 1 1 0 1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 0 1 0 0 2 0 1 1 1 1 1 0 1 2 1 2 1 1 1 2 1 1 0 1 1 1 1 1 1 1 1 2 1 1 0 1 2 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 2 2 1 0 1 1 1 0 1 1 0 1 2 0 0 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 0 2 0 1 0 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 2 1 1 1 0 1 1 0 1 2 1 2 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 0 1 1 1 1 1 1 0 2 1 0 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 0 1 1 1 1 1 2 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 2 2 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 2 1 0 1 1 0 1 1 0 1 1 2 0 1 0 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 2 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 2 1 2 1 1 0 1 1 2 0 1 2 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 2 2 1 2 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 0 1 2 1 1 2 0 0 2 2 0 1 1 1 1 1 0 1 2 1 1 0 1 1 1 1 0 1 1 2 1 0 0 1 1 0 2 1 2 1 1 1 1 1 1 0 1 1 1 0 2 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 2 1 0 1 1 1 1 1 1 0 1 1 0 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 0 1 1 0 1 1 2 1 0 0 1 1 0 1 1 1 0 1 1 1 1 2 1 1 0 1 1 1 1 1 1 2 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2 1 1 1 0 1 1 1 2 1 0 1 2 1 1 1 1 2 2 2 1 1 1 1 1 1 0 2 1 1 0 1 1 2 1 1 1 2 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 2 1 1 2 0 1 2 1 1 1 2 1 1 1 0 1 0 1 1 0 1 0 2 1 0 1 2 1 1 1 1 0 1 1 1 1 2 1 1 1 1 1 1 1 1 1 0 1 1 2 1 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1 0 2 1 0 1 1 1 1 1 1 2 1 1 1 1 0 1 1 1 2 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 2 1 1 2 1 1 1 1 1 1 1 0 1 1 1 1 0 1 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 2 1 1 0 1 1 2 1 1 1 0 1 1 1 1 0 1 2 2 1 1 1 1 1 2 1 2 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 2 2 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 2 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 2 1 1 1 0 1 0 1 1 1 0 2 0 1 1 1 0 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 0 1 2 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 2 1 0 2 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 2 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 0 1 2 1 1 0 1 1 1 2 1 1 1 1 0 1 2 1 1 1 1 0 0 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 0 2 1 1 0 2 1 0 1 1 0 1 1 1 0 1 0 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 0 0 1 2 2 1 1 0 1 1 1 1 1 1 1 1 2 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 0 0 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 0 0 1 1 1 0 0 1
-1
rotten_oranges
{"difficulty": {"n": [25, 50]}, "matrix": [[0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 0, 0, 1, 1, 0, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 2, 1, 1, 1, 1, 0, 1, 0, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1], [0, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1], [1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 1, 0, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1], [1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 1], [0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1], [0, 0, 1, 0, 1, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 2, 0, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1], [1, 1, 1, 0, 1, 1, 0, 2, 2, 1, 2, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 2, 0, 0, 2, 2, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1], [1, 1, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2], [1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1], [1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 0, 1, 2, 1, 1, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1], [1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1], [1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1], [1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1], [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1], [1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0], [1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 2, 0, 1, 1, 1], [1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1], [1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 2, 1, 0, 2, 1, 1, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1], [2, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1], [1, 0, 1, 2, 1, 1, 1, 1, 0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0], [1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1], [1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1]], "n": 40, "solution": -1, "source_dataset": "rotten_oranges", "source_index": 27}
There are nine different blocks [A] [B] [C] {A} {B} {C} (A) (B) (C) 1. One [A], one [B], and one [C] can be combined to form one {A}. 2. One [A] and one [B] can be combined to form one {C}. 3. One [B] and one [C] can be combined to form one {B}. 4. Two [C] can be combined to form one {C}. 5. One {A} and one {C} can be combined to form one (A) and one (B). 6. Two {B} can be combined to form one (C). Given a certain number of initial blocks, your job is to cycle through the rules 1-6 above, synthesizing new blocks until no more rules can be applied, or until a state (counts of each block type) is repeated. In the case a state is repeated the answer is the state before the repetition! The output should be the count of each block type after the rules have been applied in the order they are listed above. For example 1 0 3 0 2 0 0 0 1 means that you have 1 [A] 0 [B] 3 [C] 0 {A} 2 {B} 0 {C} 0 (A) 0 (B) 1 (C). Now, you have 87 [A], 62 [B], and 84 [C] blocks. Provide the count of each block type after applying the above rules. Note: Apply the rules at most 1000 times. If the rules cannot be applied anymore, or if you have reached the maximum number of iterations, stop and provide the current counts.
25 0 0 51 0 0 11 11 0
string_synthesis
{"difficulty": {"initial_blocks": [50, 100]}, "initial_blocks": [87, 62, 84], "solution": [25, 0, 0, 51, 0, 0, 11, 11, 0], "source_dataset": "string_synthesis", "source_index": 28, "states": [[87, 62, 84, 0, 0, 0, 0, 0, 0], [86, 61, 83, 1, 0, 0, 0, 0, 0], [85, 60, 82, 2, 0, 0, 0, 0, 0], [84, 59, 81, 3, 0, 0, 0, 0, 0], [83, 58, 80, 4, 0, 0, 0, 0, 0], [82, 57, 79, 5, 0, 0, 0, 0, 0], [81, 56, 78, 6, 0, 0, 0, 0, 0], [80, 55, 77, 7, 0, 0, 0, 0, 0], [79, 54, 76, 8, 0, 0, 0, 0, 0], [78, 53, 75, 9, 0, 0, 0, 0, 0], [77, 52, 74, 10, 0, 0, 0, 0, 0], [76, 51, 73, 11, 0, 0, 0, 0, 0], [75, 50, 72, 12, 0, 0, 0, 0, 0], [74, 49, 71, 13, 0, 0, 0, 0, 0], [73, 48, 70, 14, 0, 0, 0, 0, 0], [72, 47, 69, 15, 0, 0, 0, 0, 0], [71, 46, 68, 16, 0, 0, 0, 0, 0], [70, 45, 67, 17, 0, 0, 0, 0, 0], [69, 44, 66, 18, 0, 0, 0, 0, 0], [68, 43, 65, 19, 0, 0, 0, 0, 0], [67, 42, 64, 20, 0, 0, 0, 0, 0], [66, 41, 63, 21, 0, 0, 0, 0, 0], [65, 40, 62, 22, 0, 0, 0, 0, 0], [64, 39, 61, 23, 0, 0, 0, 0, 0], [63, 38, 60, 24, 0, 0, 0, 0, 0], [62, 37, 59, 25, 0, 0, 0, 0, 0], [61, 36, 58, 26, 0, 0, 0, 0, 0], [60, 35, 57, 27, 0, 0, 0, 0, 0], [59, 34, 56, 28, 0, 0, 0, 0, 0], [58, 33, 55, 29, 0, 0, 0, 0, 0], [57, 32, 54, 30, 0, 0, 0, 0, 0], [56, 31, 53, 31, 0, 0, 0, 0, 0], [55, 30, 52, 32, 0, 0, 0, 0, 0], [54, 29, 51, 33, 0, 0, 0, 0, 0], [53, 28, 50, 34, 0, 0, 0, 0, 0], [52, 27, 49, 35, 0, 0, 0, 0, 0], [51, 26, 48, 36, 0, 0, 0, 0, 0], [50, 25, 47, 37, 0, 0, 0, 0, 0], [49, 24, 46, 38, 0, 0, 0, 0, 0], [48, 23, 45, 39, 0, 0, 0, 0, 0], [47, 22, 44, 40, 0, 0, 0, 0, 0], [46, 21, 43, 41, 0, 0, 0, 0, 0], [45, 20, 42, 42, 0, 0, 0, 0, 0], [44, 19, 41, 43, 0, 0, 0, 0, 0], [43, 18, 40, 44, 0, 0, 0, 0, 0], [42, 17, 39, 45, 0, 0, 0, 0, 0], [41, 16, 38, 46, 0, 0, 0, 0, 0], [40, 15, 37, 47, 0, 0, 0, 0, 0], [39, 14, 36, 48, 0, 0, 0, 0, 0], [38, 13, 35, 49, 0, 0, 0, 0, 0], [37, 12, 34, 50, 0, 0, 0, 0, 0], [36, 11, 33, 51, 0, 0, 0, 0, 0], [35, 10, 32, 52, 0, 0, 0, 0, 0], [34, 9, 31, 53, 0, 0, 0, 0, 0], [33, 8, 30, 54, 0, 0, 0, 0, 0], [32, 7, 29, 55, 0, 0, 0, 0, 0], [31, 6, 28, 56, 0, 0, 0, 0, 0], [30, 5, 27, 57, 0, 0, 0, 0, 0], [29, 4, 26, 58, 0, 0, 0, 0, 0], [28, 3, 25, 59, 0, 0, 0, 0, 0], [27, 2, 24, 60, 0, 0, 0, 0, 0], [26, 1, 23, 61, 0, 0, 0, 0, 0], [25, 0, 22, 62, 0, 0, 0, 0, 0], [25, 0, 20, 62, 0, 1, 0, 0, 0], [25, 0, 18, 62, 0, 2, 0, 0, 0], [25, 0, 16, 62, 0, 3, 0, 0, 0], [25, 0, 14, 62, 0, 4, 0, 0, 0], [25, 0, 12, 62, 0, 5, 0, 0, 0], [25, 0, 10, 62, 0, 6, 0, 0, 0], [25, 0, 8, 62, 0, 7, 0, 0, 0], [25, 0, 6, 62, 0, 8, 0, 0, 0], [25, 0, 4, 62, 0, 9, 0, 0, 0], [25, 0, 2, 62, 0, 10, 0, 0, 0], [25, 0, 0, 62, 0, 11, 0, 0, 0], [25, 0, 0, 61, 0, 10, 1, 1, 0], [25, 0, 0, 60, 0, 9, 2, 2, 0], [25, 0, 0, 59, 0, 8, 3, 3, 0], [25, 0, 0, 58, 0, 7, 4, 4, 0], [25, 0, 0, 57, 0, 6, 5, 5, 0], [25, 0, 0, 56, 0, 5, 6, 6, 0], [25, 0, 0, 55, 0, 4, 7, 7, 0], [25, 0, 0, 54, 0, 3, 8, 8, 0], [25, 0, 0, 53, 0, 2, 9, 9, 0], [25, 0, 0, 52, 0, 1, 10, 10, 0], [25, 0, 0, 51, 0, 0, 11, 11, 0]]}
Two strings are isomorphic if the characters in one string can be replaced to get the second string. All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character, but a character may map to itself. Return True if the following two strings are isomorphic, or False otherwise: uonzesnatyluhfcutrkybufguwizvhxctuepgnpqxyaoedqbjqkgaxgjhdfudbppalhxbzxwyxzsgfcva cwlqjnlsvxrcmuecvfbxocuacyhqimdevcjgalgzdxswjtzokztasdakmtuctoggsrmdoqdyxdqnaueis
False
isomorphic_strings
{"difficulty": {"string_length": [50, 100]}, "solution": false, "solvable": false, "source_dataset": "isomorphic_strings", "source_index": 29, "string_length": 81, "words": ["uonzesnatyluhfcutrkybufguwizvhxctuepgnpqxyaoedqbjqkgaxgjhdfudbppalhxbzxwyxzsgfcva", "cwlqjnlsvxrcmuecvfbxocuacyhqimdevcjgalgzdxswjtzokztasdakmtuctoggsrmdoqdyxdqnaueis"]}
Given a binary string, return the minimum number of character swaps to make it alternating, or -1 if it is impossible. The string is called alternating if no two adjacent characters are equal. For example, the strings "010" and "1010" are alternating, while the string "0100" is not. Any two characters may be swapped, even if they are not adjacent. Now, determine the minimum number of swaps to make the following binary string alternating: 0101101101100011110000000111001011000011000101000011011111101100001100010001000101000011000100111010110010111110110011101100001101100000101110001011100111111000000110100100101111010111100110010101111110001100011011011010001101000110101100110101110110011101001111001010000110100010
70
binary_alternation
{"difficulty": {"n": [50, 500]}, "n": 280, "solution": 70, "solvable": true, "source_dataset": "binary_alternation", "source_index": 30, "string": "0101101101100011110000000111001011000011000101000011011111101100001100010001000101000011000100111010110010111110110011101100001101100000101110001011100111111000000110100100101111010111100110010101111110001100011011011010001101000110101100110101110110011101001111001010000110100010"}
Please provide a coloring for this graph such that every vertex is not connected to a vertex of the same color. The graph has these properties: Vertices: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] Edges: [(0, 4), (0, 8), (1, 4), (1, 5), (2, 9), (2, 13), (3, 7), (3, 8), (5, 13), (7, 14), (8, 9), (8, 15), (8, 16), (11, 16)] Possible colors: [1, 2, 3, 4] Return your solution as a JSON map of vertices to colors. (For example: {"0": 1, "1": 2, "2": 3}.)
null
graph_color
{"difficulty": {"num_colors": 4, "num_vertices": [10, 20]}, "num_vertices": 17, "possible_answer": {"0": 1, "1": 1, "2": 1, "3": 1, "4": 2, "5": 2, "6": 1, "7": 2, "8": 2, "9": 3, "10": 1, "11": 1, "12": 1, "13": 3, "14": 1, "15": 1, "16": 3}, "puzzle": {"color_options": [1, 2, 3, 4], "edges": [[0, 4], [0, 8], [1, 4], [1, 5], [2, 9], [2, 13], [3, 7], [3, 8], [5, 13], [7, 14], [8, 9], [8, 15], [8, 16], [11, 16]], "num_colors": 4, "vertices": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]}, "source_dataset": "graph_color", "source_index": 31}
There is a dismantling engineer who has old machines A, B, and C. He discovered that he can obtain a batch of new parts X, Y, Z through the following rules: 1. One unit of machine A can be dismanteled into two units of part X and one unit of part Y. 2. Two units of machine B can be dismanteled into one unit of part X. 3. Two units of machine C can be dismanteled into one unit of part Y. 4. One unit of machine B and one unit of machine C can be combined into one unit of machine A. 5. One unit of part X and one unit of part Y can be combined into one unit of part Z. Given a certain number of initial machines, your job is to continuously cycle through the rules 1-5 above, exausting one rule at a time, until no more rules can be applied, or until a state (counts of each machine and part type) is repeated. After you make use of a rule, you should update the counts of each machine and part type accordingly, and then restart the process from rule 1. The output should be the count of each machine and part type after the rules have been exhaustively applied in the following order: A B C X Y Z. For example 1 0 1 5 4 3 means that you have 1 machine A, 0 machine B, 1 machine C, 5 part X, 4 part Y, and 3 part Z. Now, you have 51 machine A, 62 machine B, and 96 machine C. Provide the count of each machine and part type after applying the above rules. Note: Apply the rules at most 1000 times. If the rules cannot be applied anymore, or if you have reached the maximum number of iterations, stop and provide the current counts of each machine and part type.
0 0 0 34 0 99
string_splitting
{"difficulty": {"initial_machines": [50, 100]}, "initial_machines": [51, 62, 96], "solution": [0, 0, 0, 34, 0, 99], "source_dataset": "string_splitting", "source_index": 32, "states": [[51, 62, 96, 0, 0, 0], [50, 62, 96, 2, 1, 0], [49, 62, 96, 4, 2, 0], [48, 62, 96, 6, 3, 0], [47, 62, 96, 8, 4, 0], [46, 62, 96, 10, 5, 0], [45, 62, 96, 12, 6, 0], [44, 62, 96, 14, 7, 0], [43, 62, 96, 16, 8, 0], [42, 62, 96, 18, 9, 0], [41, 62, 96, 20, 10, 0], [40, 62, 96, 22, 11, 0], [39, 62, 96, 24, 12, 0], [38, 62, 96, 26, 13, 0], [37, 62, 96, 28, 14, 0], [36, 62, 96, 30, 15, 0], [35, 62, 96, 32, 16, 0], [34, 62, 96, 34, 17, 0], [33, 62, 96, 36, 18, 0], [32, 62, 96, 38, 19, 0], [31, 62, 96, 40, 20, 0], [30, 62, 96, 42, 21, 0], [29, 62, 96, 44, 22, 0], [28, 62, 96, 46, 23, 0], [27, 62, 96, 48, 24, 0], [26, 62, 96, 50, 25, 0], [25, 62, 96, 52, 26, 0], [24, 62, 96, 54, 27, 0], [23, 62, 96, 56, 28, 0], [22, 62, 96, 58, 29, 0], [21, 62, 96, 60, 30, 0], [20, 62, 96, 62, 31, 0], [19, 62, 96, 64, 32, 0], [18, 62, 96, 66, 33, 0], [17, 62, 96, 68, 34, 0], [16, 62, 96, 70, 35, 0], [15, 62, 96, 72, 36, 0], [14, 62, 96, 74, 37, 0], [13, 62, 96, 76, 38, 0], [12, 62, 96, 78, 39, 0], [11, 62, 96, 80, 40, 0], [10, 62, 96, 82, 41, 0], [9, 62, 96, 84, 42, 0], [8, 62, 96, 86, 43, 0], [7, 62, 96, 88, 44, 0], [6, 62, 96, 90, 45, 0], [5, 62, 96, 92, 46, 0], [4, 62, 96, 94, 47, 0], [3, 62, 96, 96, 48, 0], [2, 62, 96, 98, 49, 0], [1, 62, 96, 100, 50, 0], [0, 62, 96, 102, 51, 0], [0, 60, 96, 103, 51, 0], [0, 58, 96, 104, 51, 0], [0, 56, 96, 105, 51, 0], [0, 54, 96, 106, 51, 0], [0, 52, 96, 107, 51, 0], [0, 50, 96, 108, 51, 0], [0, 48, 96, 109, 51, 0], [0, 46, 96, 110, 51, 0], [0, 44, 96, 111, 51, 0], [0, 42, 96, 112, 51, 0], [0, 40, 96, 113, 51, 0], [0, 38, 96, 114, 51, 0], [0, 36, 96, 115, 51, 0], [0, 34, 96, 116, 51, 0], [0, 32, 96, 117, 51, 0], [0, 30, 96, 118, 51, 0], [0, 28, 96, 119, 51, 0], [0, 26, 96, 120, 51, 0], [0, 24, 96, 121, 51, 0], [0, 22, 96, 122, 51, 0], [0, 20, 96, 123, 51, 0], [0, 18, 96, 124, 51, 0], [0, 16, 96, 125, 51, 0], [0, 14, 96, 126, 51, 0], [0, 12, 96, 127, 51, 0], [0, 10, 96, 128, 51, 0], [0, 8, 96, 129, 51, 0], [0, 6, 96, 130, 51, 0], [0, 4, 96, 131, 51, 0], [0, 2, 96, 132, 51, 0], [0, 0, 96, 133, 51, 0], [0, 0, 94, 133, 52, 0], [0, 0, 92, 133, 53, 0], [0, 0, 90, 133, 54, 0], [0, 0, 88, 133, 55, 0], [0, 0, 86, 133, 56, 0], [0, 0, 84, 133, 57, 0], [0, 0, 82, 133, 58, 0], [0, 0, 80, 133, 59, 0], [0, 0, 78, 133, 60, 0], [0, 0, 76, 133, 61, 0], [0, 0, 74, 133, 62, 0], [0, 0, 72, 133, 63, 0], [0, 0, 70, 133, 64, 0], [0, 0, 68, 133, 65, 0], [0, 0, 66, 133, 66, 0], [0, 0, 64, 133, 67, 0], [0, 0, 62, 133, 68, 0], [0, 0, 60, 133, 69, 0], [0, 0, 58, 133, 70, 0], [0, 0, 56, 133, 71, 0], [0, 0, 54, 133, 72, 0], [0, 0, 52, 133, 73, 0], [0, 0, 50, 133, 74, 0], [0, 0, 48, 133, 75, 0], [0, 0, 46, 133, 76, 0], [0, 0, 44, 133, 77, 0], [0, 0, 42, 133, 78, 0], [0, 0, 40, 133, 79, 0], [0, 0, 38, 133, 80, 0], [0, 0, 36, 133, 81, 0], [0, 0, 34, 133, 82, 0], [0, 0, 32, 133, 83, 0], [0, 0, 30, 133, 84, 0], [0, 0, 28, 133, 85, 0], [0, 0, 26, 133, 86, 0], [0, 0, 24, 133, 87, 0], [0, 0, 22, 133, 88, 0], [0, 0, 20, 133, 89, 0], [0, 0, 18, 133, 90, 0], [0, 0, 16, 133, 91, 0], [0, 0, 14, 133, 92, 0], [0, 0, 12, 133, 93, 0], [0, 0, 10, 133, 94, 0], [0, 0, 8, 133, 95, 0], [0, 0, 6, 133, 96, 0], [0, 0, 4, 133, 97, 0], [0, 0, 2, 133, 98, 0], [0, 0, 0, 133, 99, 0], [0, 0, 0, 132, 98, 1], [0, 0, 0, 131, 97, 2], [0, 0, 0, 130, 96, 3], [0, 0, 0, 129, 95, 4], [0, 0, 0, 128, 94, 5], [0, 0, 0, 127, 93, 6], [0, 0, 0, 126, 92, 7], [0, 0, 0, 125, 91, 8], [0, 0, 0, 124, 90, 9], [0, 0, 0, 123, 89, 10], [0, 0, 0, 122, 88, 11], [0, 0, 0, 121, 87, 12], [0, 0, 0, 120, 86, 13], [0, 0, 0, 119, 85, 14], [0, 0, 0, 118, 84, 15], [0, 0, 0, 117, 83, 16], [0, 0, 0, 116, 82, 17], [0, 0, 0, 115, 81, 18], [0, 0, 0, 114, 80, 19], [0, 0, 0, 113, 79, 20], [0, 0, 0, 112, 78, 21], [0, 0, 0, 111, 77, 22], [0, 0, 0, 110, 76, 23], [0, 0, 0, 109, 75, 24], [0, 0, 0, 108, 74, 25], [0, 0, 0, 107, 73, 26], [0, 0, 0, 106, 72, 27], [0, 0, 0, 105, 71, 28], [0, 0, 0, 104, 70, 29], [0, 0, 0, 103, 69, 30], [0, 0, 0, 102, 68, 31], [0, 0, 0, 101, 67, 32], [0, 0, 0, 100, 66, 33], [0, 0, 0, 99, 65, 34], [0, 0, 0, 98, 64, 35], [0, 0, 0, 97, 63, 36], [0, 0, 0, 96, 62, 37], [0, 0, 0, 95, 61, 38], [0, 0, 0, 94, 60, 39], [0, 0, 0, 93, 59, 40], [0, 0, 0, 92, 58, 41], [0, 0, 0, 91, 57, 42], [0, 0, 0, 90, 56, 43], [0, 0, 0, 89, 55, 44], [0, 0, 0, 88, 54, 45], [0, 0, 0, 87, 53, 46], [0, 0, 0, 86, 52, 47], [0, 0, 0, 85, 51, 48], [0, 0, 0, 84, 50, 49], [0, 0, 0, 83, 49, 50], [0, 0, 0, 82, 48, 51], [0, 0, 0, 81, 47, 52], [0, 0, 0, 80, 46, 53], [0, 0, 0, 79, 45, 54], [0, 0, 0, 78, 44, 55], [0, 0, 0, 77, 43, 56], [0, 0, 0, 76, 42, 57], [0, 0, 0, 75, 41, 58], [0, 0, 0, 74, 40, 59], [0, 0, 0, 73, 39, 60], [0, 0, 0, 72, 38, 61], [0, 0, 0, 71, 37, 62], [0, 0, 0, 70, 36, 63], [0, 0, 0, 69, 35, 64], [0, 0, 0, 68, 34, 65], [0, 0, 0, 67, 33, 66], [0, 0, 0, 66, 32, 67], [0, 0, 0, 65, 31, 68], [0, 0, 0, 64, 30, 69], [0, 0, 0, 63, 29, 70], [0, 0, 0, 62, 28, 71], [0, 0, 0, 61, 27, 72], [0, 0, 0, 60, 26, 73], [0, 0, 0, 59, 25, 74], [0, 0, 0, 58, 24, 75], [0, 0, 0, 57, 23, 76], [0, 0, 0, 56, 22, 77], [0, 0, 0, 55, 21, 78], [0, 0, 0, 54, 20, 79], [0, 0, 0, 53, 19, 80], [0, 0, 0, 52, 18, 81], [0, 0, 0, 51, 17, 82], [0, 0, 0, 50, 16, 83], [0, 0, 0, 49, 15, 84], [0, 0, 0, 48, 14, 85], [0, 0, 0, 47, 13, 86], [0, 0, 0, 46, 12, 87], [0, 0, 0, 45, 11, 88], [0, 0, 0, 44, 10, 89], [0, 0, 0, 43, 9, 90], [0, 0, 0, 42, 8, 91], [0, 0, 0, 41, 7, 92], [0, 0, 0, 40, 6, 93], [0, 0, 0, 39, 5, 94], [0, 0, 0, 38, 4, 95], [0, 0, 0, 37, 3, 96], [0, 0, 0, 36, 2, 97], [0, 0, 0, 35, 1, 98], [0, 0, 0, 34, 0, 99]]}
For the following matrix: 2 2 6 7 7 7 7 4 3 3 9 5 7 3 3 6 1 1 7 8 4 6 8 5 6 8 6 2 5 2 6 5 8 3 4 0 8 0 6 6 2 8 3 1 8 6 6 4 8 5 2 9 9 7 5 7 9 3 5 7 5 0 9 6 2 8 4 3 8 9 8 2 9 1 6 0 0 5 8 2 0 9 6 0 8 4 3 5 5 1 6 3 3 9 8 6 9 3 6 4 8 4 4 2 0 2 1 9 9 9 6 2 1 7 6 5 7 5 7 8 6 3 3 4 9 2 0 9 6 1 2 3 8 6 5 5 7 8 1 4 4 4 1 3 1 1 8 7 3 2 5 0 2 8 9 1 8 5 8 4 1 8 5 4 5 9 7 1 4 5 0 5 2 3 0 8 9 3 1 3 2 2 6 1 0 6 3 5 1 8 7 5 5 8 5 6 1 8 9 8 9 3 4 2 4 3 3 8 4 8 2 1 9 2 9 7 7 5 9 7 0 0 9 5 3 5 1 2 9 3 2 2 1 7 2 7 6 1 1 4 3 6 8 5 7 0 7 1 1 1 8 7 1 9 1 3 9 5 9 8 9 3 8 6 8 5 4 7 1 1 5 4 3 9 8 3 5 9 4 1 1 7 7 7 4 5 2 6 2 5 9 7 7 1 8 8 0 8 8 1 4 3 9 8 9 4 0 6 0 3 6 8 6 5 3 4 9 8 8 3 6 9 2 5 8 4 4 4 6 4 8 2 4 1 6 5 7 8 2 2 1 5 7 1 7 9 6 9 3 1 6 6 7 9 8 3 1 8 7 3 6 0 2 2 3 6 7 3 8 0 1 8 5 5 7 0 1 8 1 8 9 6 3 3 7 6 9 9 3 3 1 1 8 6 5 6 1 1 4 7 7 7 9 8 1 1 0 7 4 0 0 1 8 2 7 2 6 1 8 9 4 4 9 9 0 6 1 0 9 1 6 6 0 6 0 4 1 6 9 4 6 2 1 1 3 0 7 0 0 6 6 4 2 1 5 6 4 8 2 3 0 4 4 7 4 4 1 0 2 7 1 4 9 0 6 1 5 6 5 6 6 8 6 5 6 6 4 1 7 1 5 4 0 7 1 4 6 8 9 3 8 6 0 5 4 5 5 9 4 4 3 5 0 0 3 9 5 3 3 8 4 7 8 6 9 6 3 7 3 6 2 9 6 5 8 3 8 8 7 4 5 2 0 7 1 4 9 2 4 2 4 9 0 1 9 3 0 4 7 2 0 1 6 8 9 3 8 2 2 2 8 7 2 5 1 7 7 2 1 6 7 9 4 2 1 7 9 0 3 5 9 9 8 8 5 2 6 7 2 6 1 2 0 1 9 6 7 2 4 9 6 5 1 0 9 1 2 0 5 9 0 0 7 3 1 7 8 6 2 2 6 8 9 3 1 4 0 0 8 3 4 4 9 6 5 2 9 6 5 5 5 4 2 9 8 3 3 8 7 1 1 8 1 6 4 2 7 3 6 2 6 5 5 2 5 0 1 3 8 1 7 8 9 5 7 3 1 2 4 8 4 5 9 2 0 9 7 1 5 1 0 0 3 9 1 4 8 6 4 5 6 0 5 0 6 9 8 3 8 5 8 9 1 5 2 8 1 9 2 6 2 2 0 2 5 6 5 0 3 9 2 2 8 4 7 0 7 5 1 0 9 7 2 6 5 4 8 4 8 5 9 3 0 6 2 1 0 2 2 7 0 1 5 7 8 6 1 7 3 5 8 6 3 9 6 8 0 8 6 7 5 4 1 1 6 0 3 1 9 0 5 1 1 8 0 6 2 4 6 5 1 8 2 9 0 8 4 2 6 8 0 8 0 0 6 3 8 5 0 7 4 3 6 3 8 4 9 4 9 7 7 6 6 9 7 8 5 5 2 6 6 0 6 7 9 7 8 0 0 3 7 9 7 7 9 3 5 6 9 5 7 7 8 1 8 9 2 2 7 3 4 3 3 2 4 2 2 0 6 8 9 3 5 2 1 9 8 0 2 1 1 8 7 8 9 1 2 1 5 7 9 5 8 5 6 6 1 6 7 4 2 5 5 7 2 1 8 8 8 9 4 7 1 9 6 8 6 7 2 5 2 0 6 7 9 2 3 3 5 3 1 5 3 4 3 9 1 8 4 6 8 4 1 4 3 5 9 0 2 7 4 1 5 6 2 3 6 7 8 5 5 3 9 9 6 6 3 9 6 1 7 8 0 7 7 3 8 5 6 7 5 6 3 3 5 6 7 7 3 8 9 7 4 9 0 2 6 8 4 7 1 1 4 7 8 4 7 8 3 1 4 1 2 7 0 4 3 4 6 4 4 3 6 1 6 5 3 7 3 0 2 7 4 8 4 5 4 8 2 9 8 4 2 9 2 6 9 3 9 1 2 9 8 6 3 5 4 0 4 1 8 5 5 8 7 6 5 0 1 2 6 2 1 9 5 5 6 6 6 4 2 8 8 0 1 5 9 0 2 9 9 5 3 7 3 5 5 9 1 2 8 4 0 6 0 0 6 4 0 4 1 8 8 8 5 4 5 9 1 6 0 8 0 8 7 0 1 6 5 6 1 3 0 6 3 8 0 9 5 3 1 Perform the following series of operations in order: - Identity transformation, i.e. no change - Horizontally mirror the matrix - Horizontally mirror the matrix - Map each occurrence of 6 to 4 - Set all elements divisible by 9 to zero - Map each occurrence of 8 to 9 - Horizontally mirror the matrix - Map each occurrence of 0 to 1 - Horizontally mirror the matrix - Set all elements divisible by 4 to zero - Remove every 43-th column (1-indexed)
2 2 0 7 7 7 7 0 3 3 1 5 7 3 3 0 1 1 7 9 0 0 9 5 0 9 0 2 5 2 0 5 9 3 0 1 9 1 0 0 2 9 1 9 0 0 0 9 5 2 1 1 7 5 7 1 3 5 7 5 1 1 0 2 9 0 3 9 1 9 2 1 1 0 1 1 5 9 2 1 1 0 1 9 3 5 5 1 0 3 3 1 9 0 1 3 0 0 9 0 0 2 1 2 1 1 1 1 0 2 1 7 0 5 7 5 7 9 0 3 3 0 1 2 1 1 1 2 3 9 0 5 5 7 9 1 0 0 0 1 3 1 1 9 7 3 2 5 1 2 9 1 1 9 5 9 0 1 9 5 0 5 1 7 1 0 5 1 2 3 1 9 1 3 1 3 2 2 0 1 1 0 3 5 1 9 7 5 5 9 5 0 1 9 1 9 1 3 0 2 0 3 3 9 0 9 2 1 1 2 7 7 5 1 7 1 1 1 5 3 5 1 2 1 3 2 2 1 7 2 7 0 1 1 0 3 0 9 5 7 1 7 1 1 1 9 7 1 1 1 3 1 1 9 1 3 9 0 9 5 0 7 1 1 5 0 3 1 9 3 5 1 0 1 1 7 7 7 0 5 2 0 2 5 1 7 7 1 9 9 1 9 9 1 3 1 9 1 0 1 0 1 3 0 9 0 5 3 0 1 9 9 3 0 1 2 5 9 0 0 0 0 0 9 2 0 1 0 5 7 9 2 2 1 5 7 7 1 0 1 3 1 0 0 7 1 9 3 1 9 7 3 0 1 2 2 3 0 7 3 9 1 1 9 5 5 7 1 1 9 1 9 1 0 3 3 7 0 1 3 3 1 1 9 0 5 0 1 1 0 7 7 7 1 9 1 1 1 7 0 1 1 1 9 2 7 2 0 1 9 1 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 2 1 1 3 1 7 1 1 0 0 0 2 1 5 0 0 9 2 3 1 0 0 7 0 0 1 1 2 7 1 0 1 0 1 5 0 5 0 0 9 0 5 0 0 0 1 7 1 5 0 1 7 1 0 0 9 1 3 9 0 1 5 0 5 5 1 0 0 3 5 1 1 3 5 3 3 9 0 7 9 0 1 0 3 7 3 0 2 1 0 5 9 3 9 9 7 0 5 2 1 7 1 0 1 2 0 2 0 1 1 1 1 3 1 0 2 1 1 0 9 1 3 9 2 2 2 9 7 2 5 1 7 7 2 1 0 7 1 0 2 1 7 1 1 3 5 1 1 9 9 5 2 0 7 2 0 1 1 1 1 0 7 2 0 1 0 5 1 1 1 1 2 1 5 1 1 1 7 3 1 7 9 0 2 2 0 9 1 3 1 0 1 1 9 3 0 0 1 0 2 1 0 5 5 5 0 2 1 9 3 3 9 7 1 1 9 1 0 0 2 7 3 0 2 0 5 5 2 5 1 1 3 9 1 7 9 1 5 7 3 1 0 9 0 5 1 2 1 1 7 1 5 1 1 1 3 1 1 0 9 0 0 5 0 1 5 1 0 1 9 3 9 5 9 1 1 5 2 9 1 1 2 0 2 1 2 5 0 5 1 3 1 2 2 9 0 7 1 7 5 1 1 1 7 2 0 5 0 9 0 9 5 1 3 1 0 2 1 1 2 2 7 1 1 5 9 0 1 7 3 5 9 0 3 1 0 9 1 9 0 7 5 0 1 1 0 1 3 1 1 1 5 1 1 9 1 0 2 0 0 5 1 9 2 1 1 9 2 0 9 1 9 1 1 0 3 9 5 1 7 0 3 0 3 9 0 1 0 1 7 7 0 0 1 7 9 5 5 2 0 0 1 0 7 1 7 9 1 1 7 1 7 7 1 3 5 0 1 5 7 7 9 1 9 1 2 2 7 3 0 3 3 2 0 2 2 1 0 9 1 3 5 2 1 1 9 1 2 1 1 9 9 1 1 2 1 5 7 1 5 9 5 0 0 1 0 7 0 2 5 5 7 2 1 9 9 9 1 0 7 1 1 0 9 0 7 2 5 2 1 0 7 1 3 3 5 3 1 5 3 0 3 1 1 9 0 0 9 0 1 0 3 5 1 1 2 7 0 1 5 0 2 3 0 7 9 5 5 3 1 1 0 0 3 1 1 7 9 1 7 7 3 9 5 0 7 5 0 3 3 5 0 7 7 3 9 1 7 0 1 1 2 0 9 0 7 1 1 0 7 9 0 7 9 3 1 0 2 7 1 0 3 0 0 0 0 3 0 1 0 5 3 7 3 1 2 7 0 9 0 5 0 9 2 1 9 0 2 1 2 0 1 3 1 1 2 1 9 0 5 0 1 0 1 9 5 5 9 7 0 5 1 1 2 0 2 1 1 5 5 0 0 0 0 2 9 9 1 1 5 1 1 2 1 1 5 3 7 3 5 5 1 2 9 0 1 0 1 1 0 0 1 0 1 9 9 9 5 0 5 1 1 0 1 9 1 9 7 1 1 0 5 0 1 3 1 0 3 9 1 1 5 3
manipulate_matrix
{"cols": 43, "difficulty": {"cols": [25, 50], "num_transforms": [3, 10], "rows": [25, 50]}, "matrix": [[2, 2, 6, 7, 7, 7, 7, 4, 3, 3, 9, 5, 7, 3, 3, 6, 1, 1, 7, 8, 4, 6, 8, 5, 6, 8, 6, 2, 5, 2, 6, 5, 8, 3, 4, 0, 8, 0, 6, 6, 2, 8, 3], [1, 8, 6, 6, 4, 8, 5, 2, 9, 9, 7, 5, 7, 9, 3, 5, 7, 5, 0, 9, 6, 2, 8, 4, 3, 8, 9, 8, 2, 9, 1, 6, 0, 0, 5, 8, 2, 0, 9, 6, 0, 8, 4], [3, 5, 5, 1, 6, 3, 3, 9, 8, 6, 9, 3, 6, 4, 8, 4, 4, 2, 0, 2, 1, 9, 9, 9, 6, 2, 1, 7, 6, 5, 7, 5, 7, 8, 6, 3, 3, 4, 9, 2, 0, 9, 6], [1, 2, 3, 8, 6, 5, 5, 7, 8, 1, 4, 4, 4, 1, 3, 1, 1, 8, 7, 3, 2, 5, 0, 2, 8, 9, 1, 8, 5, 8, 4, 1, 8, 5, 4, 5, 9, 7, 1, 4, 5, 0, 5], [2, 3, 0, 8, 9, 3, 1, 3, 2, 2, 6, 1, 0, 6, 3, 5, 1, 8, 7, 5, 5, 8, 5, 6, 1, 8, 9, 8, 9, 3, 4, 2, 4, 3, 3, 8, 4, 8, 2, 1, 9, 2, 9], [7, 7, 5, 9, 7, 0, 0, 9, 5, 3, 5, 1, 2, 9, 3, 2, 2, 1, 7, 2, 7, 6, 1, 1, 4, 3, 6, 8, 5, 7, 0, 7, 1, 1, 1, 8, 7, 1, 9, 1, 3, 9, 5], [9, 8, 9, 3, 8, 6, 8, 5, 4, 7, 1, 1, 5, 4, 3, 9, 8, 3, 5, 9, 4, 1, 1, 7, 7, 7, 4, 5, 2, 6, 2, 5, 9, 7, 7, 1, 8, 8, 0, 8, 8, 1, 4], [3, 9, 8, 9, 4, 0, 6, 0, 3, 6, 8, 6, 5, 3, 4, 9, 8, 8, 3, 6, 9, 2, 5, 8, 4, 4, 4, 6, 4, 8, 2, 4, 1, 6, 5, 7, 8, 2, 2, 1, 5, 7, 1], [7, 9, 6, 9, 3, 1, 6, 6, 7, 9, 8, 3, 1, 8, 7, 3, 6, 0, 2, 2, 3, 6, 7, 3, 8, 0, 1, 8, 5, 5, 7, 0, 1, 8, 1, 8, 9, 6, 3, 3, 7, 6, 9], [9, 3, 3, 1, 1, 8, 6, 5, 6, 1, 1, 4, 7, 7, 7, 9, 8, 1, 1, 0, 7, 4, 0, 0, 1, 8, 2, 7, 2, 6, 1, 8, 9, 4, 4, 9, 9, 0, 6, 1, 0, 9, 1], [6, 6, 0, 6, 0, 4, 1, 6, 9, 4, 6, 2, 1, 1, 3, 0, 7, 0, 0, 6, 6, 4, 2, 1, 5, 6, 4, 8, 2, 3, 0, 4, 4, 7, 4, 4, 1, 0, 2, 7, 1, 4, 9], [0, 6, 1, 5, 6, 5, 6, 6, 8, 6, 5, 6, 6, 4, 1, 7, 1, 5, 4, 0, 7, 1, 4, 6, 8, 9, 3, 8, 6, 0, 5, 4, 5, 5, 9, 4, 4, 3, 5, 0, 0, 3, 9], [5, 3, 3, 8, 4, 7, 8, 6, 9, 6, 3, 7, 3, 6, 2, 9, 6, 5, 8, 3, 8, 8, 7, 4, 5, 2, 0, 7, 1, 4, 9, 2, 4, 2, 4, 9, 0, 1, 9, 3, 0, 4, 7], [2, 0, 1, 6, 8, 9, 3, 8, 2, 2, 2, 8, 7, 2, 5, 1, 7, 7, 2, 1, 6, 7, 9, 4, 2, 1, 7, 9, 0, 3, 5, 9, 9, 8, 8, 5, 2, 6, 7, 2, 6, 1, 2], [0, 1, 9, 6, 7, 2, 4, 9, 6, 5, 1, 0, 9, 1, 2, 0, 5, 9, 0, 0, 7, 3, 1, 7, 8, 6, 2, 2, 6, 8, 9, 3, 1, 4, 0, 0, 8, 3, 4, 4, 9, 6, 5], [2, 9, 6, 5, 5, 5, 4, 2, 9, 8, 3, 3, 8, 7, 1, 1, 8, 1, 6, 4, 2, 7, 3, 6, 2, 6, 5, 5, 2, 5, 0, 1, 3, 8, 1, 7, 8, 9, 5, 7, 3, 1, 2], [4, 8, 4, 5, 9, 2, 0, 9, 7, 1, 5, 1, 0, 0, 3, 9, 1, 4, 8, 6, 4, 5, 6, 0, 5, 0, 6, 9, 8, 3, 8, 5, 8, 9, 1, 5, 2, 8, 1, 9, 2, 6, 2], [2, 0, 2, 5, 6, 5, 0, 3, 9, 2, 2, 8, 4, 7, 0, 7, 5, 1, 0, 9, 7, 2, 6, 5, 4, 8, 4, 8, 5, 9, 3, 0, 6, 2, 1, 0, 2, 2, 7, 0, 1, 5, 7], [8, 6, 1, 7, 3, 5, 8, 6, 3, 9, 6, 8, 0, 8, 6, 7, 5, 4, 1, 1, 6, 0, 3, 1, 9, 0, 5, 1, 1, 8, 0, 6, 2, 4, 6, 5, 1, 8, 2, 9, 0, 8, 4], [2, 6, 8, 0, 8, 0, 0, 6, 3, 8, 5, 0, 7, 4, 3, 6, 3, 8, 4, 9, 4, 9, 7, 7, 6, 6, 9, 7, 8, 5, 5, 2, 6, 6, 0, 6, 7, 9, 7, 8, 0, 0, 3], [7, 9, 7, 7, 9, 3, 5, 6, 9, 5, 7, 7, 8, 1, 8, 9, 2, 2, 7, 3, 4, 3, 3, 2, 4, 2, 2, 0, 6, 8, 9, 3, 5, 2, 1, 9, 8, 0, 2, 1, 1, 8, 7], [8, 9, 1, 2, 1, 5, 7, 9, 5, 8, 5, 6, 6, 1, 6, 7, 4, 2, 5, 5, 7, 2, 1, 8, 8, 8, 9, 4, 7, 1, 9, 6, 8, 6, 7, 2, 5, 2, 0, 6, 7, 9, 2], [3, 3, 5, 3, 1, 5, 3, 4, 3, 9, 1, 8, 4, 6, 8, 4, 1, 4, 3, 5, 9, 0, 2, 7, 4, 1, 5, 6, 2, 3, 6, 7, 8, 5, 5, 3, 9, 9, 6, 6, 3, 9, 6], [1, 7, 8, 0, 7, 7, 3, 8, 5, 6, 7, 5, 6, 3, 3, 5, 6, 7, 7, 3, 8, 9, 7, 4, 9, 0, 2, 6, 8, 4, 7, 1, 1, 4, 7, 8, 4, 7, 8, 3, 1, 4, 1], [2, 7, 0, 4, 3, 4, 6, 4, 4, 3, 6, 1, 6, 5, 3, 7, 3, 0, 2, 7, 4, 8, 4, 5, 4, 8, 2, 9, 8, 4, 2, 9, 2, 6, 9, 3, 9, 1, 2, 9, 8, 6, 3], [5, 4, 0, 4, 1, 8, 5, 5, 8, 7, 6, 5, 0, 1, 2, 6, 2, 1, 9, 5, 5, 6, 6, 6, 4, 2, 8, 8, 0, 1, 5, 9, 0, 2, 9, 9, 5, 3, 7, 3, 5, 5, 9], [1, 2, 8, 4, 0, 6, 0, 0, 6, 4, 0, 4, 1, 8, 8, 8, 5, 4, 5, 9, 1, 6, 0, 8, 0, 8, 7, 0, 1, 6, 5, 6, 1, 3, 0, 6, 3, 8, 0, 9, 5, 3, 1]], "num_transforms": 10, "operations": [{"instruction": "- Horizontally mirror the matrix", "transform": "hmirror"}, {"instruction": "- Horizontally mirror the matrix", "transform": "hmirror"}, {"from": 6, "instruction": "- Map each occurrence of 6 to 4", "to": 4, "transform": "map"}, {"instruction": "- Set all elements divisible by 9 to zero", "k": 9, "transform": "zero_divisible"}, {"from": 8, "instruction": "- Map each occurrence of 8 to 9", "to": 9, "transform": "map"}, {"instruction": "- Horizontally mirror the matrix", "transform": "hmirror"}, {"from": 0, "instruction": "- Map each occurrence of 0 to 1", "to": 1, "transform": "map"}, {"instruction": "- Horizontally mirror the matrix", "transform": "hmirror"}, {"instruction": "- Set all elements divisible by 4 to zero", "k": 4, "transform": "zero_divisible"}, {"instruction": "- Remove every 43-th column (1-indexed)", "n": 43, "transform": "remove_every_nth_col"}], "rows": 27, "solution": [[2, 2, 0, 7, 7, 7, 7, 0, 3, 3, 1, 5, 7, 3, 3, 0, 1, 1, 7, 9, 0, 0, 9, 5, 0, 9, 0, 2, 5, 2, 0, 5, 9, 3, 0, 1, 9, 1, 0, 0, 2, 9], [1, 9, 0, 0, 0, 9, 5, 2, 1, 1, 7, 5, 7, 1, 3, 5, 7, 5, 1, 1, 0, 2, 9, 0, 3, 9, 1, 9, 2, 1, 1, 0, 1, 1, 5, 9, 2, 1, 1, 0, 1, 9], [3, 5, 5, 1, 0, 3, 3, 1, 9, 0, 1, 3, 0, 0, 9, 0, 0, 2, 1, 2, 1, 1, 1, 1, 0, 2, 1, 7, 0, 5, 7, 5, 7, 9, 0, 3, 3, 0, 1, 2, 1, 1], [1, 2, 3, 9, 0, 5, 5, 7, 9, 1, 0, 0, 0, 1, 3, 1, 1, 9, 7, 3, 2, 5, 1, 2, 9, 1, 1, 9, 5, 9, 0, 1, 9, 5, 0, 5, 1, 7, 1, 0, 5, 1], [2, 3, 1, 9, 1, 3, 1, 3, 2, 2, 0, 1, 1, 0, 3, 5, 1, 9, 7, 5, 5, 9, 5, 0, 1, 9, 1, 9, 1, 3, 0, 2, 0, 3, 3, 9, 0, 9, 2, 1, 1, 2], [7, 7, 5, 1, 7, 1, 1, 1, 5, 3, 5, 1, 2, 1, 3, 2, 2, 1, 7, 2, 7, 0, 1, 1, 0, 3, 0, 9, 5, 7, 1, 7, 1, 1, 1, 9, 7, 1, 1, 1, 3, 1], [1, 9, 1, 3, 9, 0, 9, 5, 0, 7, 1, 1, 5, 0, 3, 1, 9, 3, 5, 1, 0, 1, 1, 7, 7, 7, 0, 5, 2, 0, 2, 5, 1, 7, 7, 1, 9, 9, 1, 9, 9, 1], [3, 1, 9, 1, 0, 1, 0, 1, 3, 0, 9, 0, 5, 3, 0, 1, 9, 9, 3, 0, 1, 2, 5, 9, 0, 0, 0, 0, 0, 9, 2, 0, 1, 0, 5, 7, 9, 2, 2, 1, 5, 7], [7, 1, 0, 1, 3, 1, 0, 0, 7, 1, 9, 3, 1, 9, 7, 3, 0, 1, 2, 2, 3, 0, 7, 3, 9, 1, 1, 9, 5, 5, 7, 1, 1, 9, 1, 9, 1, 0, 3, 3, 7, 0], [1, 3, 3, 1, 1, 9, 0, 5, 0, 1, 1, 0, 7, 7, 7, 1, 9, 1, 1, 1, 7, 0, 1, 1, 1, 9, 2, 7, 2, 0, 1, 9, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1], [0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 1, 1, 3, 1, 7, 1, 1, 0, 0, 0, 2, 1, 5, 0, 0, 9, 2, 3, 1, 0, 0, 7, 0, 0, 1, 1, 2, 7, 1, 0], [1, 0, 1, 5, 0, 5, 0, 0, 9, 0, 5, 0, 0, 0, 1, 7, 1, 5, 0, 1, 7, 1, 0, 0, 9, 1, 3, 9, 0, 1, 5, 0, 5, 5, 1, 0, 0, 3, 5, 1, 1, 3], [5, 3, 3, 9, 0, 7, 9, 0, 1, 0, 3, 7, 3, 0, 2, 1, 0, 5, 9, 3, 9, 9, 7, 0, 5, 2, 1, 7, 1, 0, 1, 2, 0, 2, 0, 1, 1, 1, 1, 3, 1, 0], [2, 1, 1, 0, 9, 1, 3, 9, 2, 2, 2, 9, 7, 2, 5, 1, 7, 7, 2, 1, 0, 7, 1, 0, 2, 1, 7, 1, 1, 3, 5, 1, 1, 9, 9, 5, 2, 0, 7, 2, 0, 1], [1, 1, 1, 0, 7, 2, 0, 1, 0, 5, 1, 1, 1, 1, 2, 1, 5, 1, 1, 1, 7, 3, 1, 7, 9, 0, 2, 2, 0, 9, 1, 3, 1, 0, 1, 1, 9, 3, 0, 0, 1, 0], [2, 1, 0, 5, 5, 5, 0, 2, 1, 9, 3, 3, 9, 7, 1, 1, 9, 1, 0, 0, 2, 7, 3, 0, 2, 0, 5, 5, 2, 5, 1, 1, 3, 9, 1, 7, 9, 1, 5, 7, 3, 1], [0, 9, 0, 5, 1, 2, 1, 1, 7, 1, 5, 1, 1, 1, 3, 1, 1, 0, 9, 0, 0, 5, 0, 1, 5, 1, 0, 1, 9, 3, 9, 5, 9, 1, 1, 5, 2, 9, 1, 1, 2, 0], [2, 1, 2, 5, 0, 5, 1, 3, 1, 2, 2, 9, 0, 7, 1, 7, 5, 1, 1, 1, 7, 2, 0, 5, 0, 9, 0, 9, 5, 1, 3, 1, 0, 2, 1, 1, 2, 2, 7, 1, 1, 5], [9, 0, 1, 7, 3, 5, 9, 0, 3, 1, 0, 9, 1, 9, 0, 7, 5, 0, 1, 1, 0, 1, 3, 1, 1, 1, 5, 1, 1, 9, 1, 0, 2, 0, 0, 5, 1, 9, 2, 1, 1, 9], [2, 0, 9, 1, 9, 1, 1, 0, 3, 9, 5, 1, 7, 0, 3, 0, 3, 9, 0, 1, 0, 1, 7, 7, 0, 0, 1, 7, 9, 5, 5, 2, 0, 0, 1, 0, 7, 1, 7, 9, 1, 1], [7, 1, 7, 7, 1, 3, 5, 0, 1, 5, 7, 7, 9, 1, 9, 1, 2, 2, 7, 3, 0, 3, 3, 2, 0, 2, 2, 1, 0, 9, 1, 3, 5, 2, 1, 1, 9, 1, 2, 1, 1, 9], [9, 1, 1, 2, 1, 5, 7, 1, 5, 9, 5, 0, 0, 1, 0, 7, 0, 2, 5, 5, 7, 2, 1, 9, 9, 9, 1, 0, 7, 1, 1, 0, 9, 0, 7, 2, 5, 2, 1, 0, 7, 1], [3, 3, 5, 3, 1, 5, 3, 0, 3, 1, 1, 9, 0, 0, 9, 0, 1, 0, 3, 5, 1, 1, 2, 7, 0, 1, 5, 0, 2, 3, 0, 7, 9, 5, 5, 3, 1, 1, 0, 0, 3, 1], [1, 7, 9, 1, 7, 7, 3, 9, 5, 0, 7, 5, 0, 3, 3, 5, 0, 7, 7, 3, 9, 1, 7, 0, 1, 1, 2, 0, 9, 0, 7, 1, 1, 0, 7, 9, 0, 7, 9, 3, 1, 0], [2, 7, 1, 0, 3, 0, 0, 0, 0, 3, 0, 1, 0, 5, 3, 7, 3, 1, 2, 7, 0, 9, 0, 5, 0, 9, 2, 1, 9, 0, 2, 1, 2, 0, 1, 3, 1, 1, 2, 1, 9, 0], [5, 0, 1, 0, 1, 9, 5, 5, 9, 7, 0, 5, 1, 1, 2, 0, 2, 1, 1, 5, 5, 0, 0, 0, 0, 2, 9, 9, 1, 1, 5, 1, 1, 2, 1, 1, 5, 3, 7, 3, 5, 5], [1, 2, 9, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 9, 9, 9, 5, 0, 5, 1, 1, 0, 1, 9, 1, 9, 7, 1, 1, 0, 5, 0, 1, 3, 1, 0, 3, 9, 1, 1, 5, 3]], "source_dataset": "manipulate_matrix", "source_index": 33}
You are a police officer. A maniac has planted a bomb next to a public fountain. To defuse the bomb, you must solve a puzzle. The puzzle is solved when you fill any of the available jugs with the target amount of water. You have three move types: 'fill', 'empty' and 'pour'. To fill Jug A, you 'fill A'. To empty Jug B, you 'empty B'. To pour the contents of Jug A into Jug B, you 'pour A->B'. All jugs are empty to begin with. The empty jugs hold this many litres of water: A:11, B:6, C:11, D:6 And your target is: 3 litres. How do you defuse the bomb? Reply as a JSON-parsable list of moves which result in any of the jugs being filled with the target amount.
["fill A", "pour A->B", "empty B", "pour A->B", "fill A", "pour A->B", "empty B", "pour A->B", "empty B", "pour A->B", "fill A", "pour A->B", "empty B", "pour A->B"]
jugs
{"difficulty": {"difficulty": 10, "num_jugs": 4}, "puzzle": {"jug_capacities": [11, 6, 11, 6], "min_moves": 13, "target": 3}, "source_dataset": "jugs", "source_index": 34}
Given a string consisting of characters A, B, C, D, and E, your job is to insert a character according to the following pattern: 1. If there is a substring ABCD in the string, insert the character A after the substring. 2. If there is a substring BCDE in the string, insert the character B after the substring. 3. If there is a substring CDEA in the string, insert the character C after the substring. 4. If there is a substring DEAB in the string, insert the character D after the substring. 5. If there is a substring EABC in the string, insert the character E after the substring. Once you have inserted a character, you have to skip over the substring and the inserted character and continue the search from the next character. Your output should be a string that has been modified according to the pattern. Given the following string, provide the answer after inserting the characters according to the pattern: CEAACEECCBCBBADCBDEDDDBBECECACEACBDEEEDEEDECEAEDCCCEBAEDDCEAEBBAEBCDDEEBAAACECCBCDCAAAD
CEAACEECCBCBBADCBDEDDDBBECECACEACBDEEEDEEDECEAEDCCCEBAEDDCEAEBBAEBCDDEEBAAACECCBCDCAAAD
string_insertion
{"difficulty": {"string_length": [50, 100]}, "solution": "CEAACEECCBCBBADCBDEDDDBBECECACEACBDEEEDEEDECEAEDCCCEBAEDDCEAEBBAEBCDDEEBAAACECCBCDCAAAD", "source_dataset": "string_insertion", "source_index": 35, "string": "CEAACEECCBCBBADCBDEDDDBBECECACEACBDEEEDEEDECEAEDCCCEBAEDDCEAEBBAEBCDDEEBAAACECCBCDCAAAD", "string_length": 87}
Given a string consisting of characters A, B, C, D, and E, your job is to insert a character according to the following pattern: 1. If there is a substring ABCD in the string, insert the character A after the substring. 2. If there is a substring BCDE in the string, insert the character B after the substring. 3. If there is a substring CDEA in the string, insert the character C after the substring. 4. If there is a substring DEAB in the string, insert the character D after the substring. 5. If there is a substring EABC in the string, insert the character E after the substring. Once you have inserted a character, you have to skip over the substring and the inserted character and continue the search from the next character. Your output should be a string that has been modified according to the pattern. Given the following string, provide the answer after inserting the characters according to the pattern: DAEEDACABDCDDCBDCDBBCCDCACCCBBDAAACABCDECECDDDBBBDBBBBCEEBBCCBECEDEDBDBECDDBBEACEEAAEDDEBEABADA
DAEEDACABDCDDCBDCDBBCCDCACCCBBDAAACABCDAECECDDDBBBDBBBBCEEBBCCBECEDEDBDBECDDBBEACEEAAEDDEBEABADA
string_insertion
{"difficulty": {"string_length": [50, 100]}, "solution": "DAEEDACABDCDDCBDCDBBCCDCACCCBBDAAACABCDAECECDDDBBBDBBBBCEEBBCCBECEDEDBDBECDDBBEACEEAAEDDEBEABADA", "source_dataset": "string_insertion", "source_index": 36, "string": "DAEEDACABDCDDCBDCDBBCCDCACCCBBDAAACABCDECECDDDBBBDBBBBCEEBBCCBECEDEDBDBECDDBBEACEEAAEDDEBEABADA", "string_length": 95}
Decrypt this Caesar cipher text: RHN TZKXX MATM RHN ATOX GH KXFXWBXL YHK LMKBVM UKXTVA HY PTKKTGMR HK UKXTVA HY VHGMKTVM XQVXIM MAHLX IKHOBWXW BG ITKTZKTIA. Provide only the decrypted text as your final answer.
YOU AGREE THAT YOU HAVE NO REMEDIES FOR STRICT BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH
caesar_cipher
{"cipher_text": "RHN TZKXX MATM RHN ATOX GH KXFXWBXL YHK LMKBVM UKXTVA HY PTKKTGMR HK UKXTVA HY VHGMKTVM XQVXIM MAHLX IKHOBWXW BG ITKTZKTIA", "clear_text": "YOU AGREE THAT YOU HAVE NO REMEDIES FOR STRICT BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH", "difficulty": {"rotation": [15, 25], "words": [15, 25]}, "num_words": 21, "rotation": 19, "source_dataset": "caesar_cipher", "source_index": 37}
Please provide a coloring for this graph such that every vertex is not connected to a vertex of the same color. The graph has these properties: Vertices: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] Edges: [(1, 11), (1, 12), (2, 8), (2, 9), (3, 4), (3, 9), (11, 12)] Possible colors: [1, 2, 3, 4] Return your solution as a JSON map of vertices to colors. (For example: {"0": 1, "1": 2, "2": 3}.)
null
graph_color
{"difficulty": {"num_colors": 4, "num_vertices": [10, 20]}, "num_vertices": 13, "possible_answer": {"0": 1, "1": 1, "2": 1, "3": 1, "4": 2, "5": 1, "6": 1, "7": 1, "8": 2, "9": 2, "10": 1, "11": 2, "12": 3}, "puzzle": {"color_options": [1, 2, 3, 4], "edges": [[1, 11], [1, 12], [2, 8], [2, 9], [3, 4], [3, 9], [11, 12]], "num_colors": 4, "vertices": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]}, "source_dataset": "graph_color", "source_index": 38}
Sort these numbers in descending order: -119.2474, -321.2, -366.76, -248.849, 30.8126, 38.6291, -10.725, 222.2256, -283.308, 322.3254, -287.409, 160.5679, -161.1933, 28.72, -30.961, -457.3485, -492.38, -137.4685, -419.1836, 400.2423, -37.3, -142.48, 452.4254, -339.188, 95.42, 443.9106, -323.98, -476.696, 183.865, -418.84, 132.01, -190.19, -118.94, 23.4, 399.97, 140.434, -242.423, 325.13, -146.1915, -23.86, -369.0731, 99.668, -349.56, -375.63, -356.34, 491.122, -354.49, 380.431, 270.57, 346.13, 357.866, -314.05, 1.23, 85.69, -162.565, -100.899, -114.06, 34.37, 379.568, 221.66, 270.82, -188.5812, -273.9542, -189.3436, 220.73, 263.9933, 174.3, -116.445, 251.51, 382.522, 463.807, -430.323, 407.206, 288.2042, -372.72 Please follow the instruction below: ## 1. Let all your answers be a list of numbers. Instead of reporting your answer as -69, -13, 1, 7, 11, 43, 59, 61, use ['-69', '-13', '1', '7', '11', '43', '59', '61'] instead ## 2. Convert all numbers in the square brackets as strings. For example, ['-69', '-13', '1', '7', '11', '43', '59', '61']
['491.122', '463.807', '452.4254', '443.9106', '407.206', '400.2423', '399.97', '382.522', '380.431', '379.568', '357.866', '346.13', '325.13', '322.3254', '288.2042', '270.82', '270.57', '263.9933', '251.51', '222.2256', '221.66', '220.73', '183.865', '174.3', '160.5679', '140.434', '132.01', '99.668', '95.42', '85.69', '38.6291', '34.37', '30.8126', '28.72', '23.4', '1.23', '-10.725', '-23.86', '-30.961', '-37.3', '-100.899', '-114.06', '-116.445', '-118.94', '-119.2474', '-137.4685', '-142.48', '-146.1915', '-161.1933', '-162.565', '-188.5812', '-189.3436', '-190.19', '-242.423', '-248.849', '-273.9542', '-283.308', '-287.409', '-314.05', '-321.2', '-323.98', '-339.188', '-349.56', '-354.49', '-356.34', '-366.76', '-369.0731', '-372.72', '-375.63', '-418.84', '-419.1836', '-430.323', '-457.3485', '-476.696', '-492.38']
number_sorting
{"difficulty": {"decimals": [2, 4], "numbers": [50, 100], "value": [-500, 500]}, "direction": "descending", "numbers": 75, "original_numbers": ["-119.2474", "-321.2", "-366.76", "-248.849", "30.8126", "38.6291", "-10.725", "222.2256", "-283.308", "322.3254", "-287.409", "160.5679", "-161.1933", "28.72", "-30.961", "-457.3485", "-492.38", "-137.4685", "-419.1836", "400.2423", "-37.3", "-142.48", "452.4254", "-339.188", "95.42", "443.9106", "-323.98", "-476.696", "183.865", "-418.84", "132.01", "-190.19", "-118.94", "23.4", "399.97", "140.434", "-242.423", "325.13", "-146.1915", "-23.86", "-369.0731", "99.668", "-349.56", "-375.63", "-356.34", "491.122", "-354.49", "380.431", "270.57", "346.13", "357.866", "-314.05", "1.23", "85.69", "-162.565", "-100.899", "-114.06", "34.37", "379.568", "221.66", "270.82", "-188.5812", "-273.9542", "-189.3436", "220.73", "263.9933", "174.3", "-116.445", "251.51", "382.522", "463.807", "-430.323", "407.206", "288.2042", "-372.72"], "sorted_numbers": ["491.122", "463.807", "452.4254", "443.9106", "407.206", "400.2423", "399.97", "382.522", "380.431", "379.568", "357.866", "346.13", "325.13", "322.3254", "288.2042", "270.82", "270.57", "263.9933", "251.51", "222.2256", "221.66", "220.73", "183.865", "174.3", "160.5679", "140.434", "132.01", "99.668", "95.42", "85.69", "38.6291", "34.37", "30.8126", "28.72", "23.4", "1.23", "-10.725", "-23.86", "-30.961", "-37.3", "-100.899", "-114.06", "-116.445", "-118.94", "-119.2474", "-137.4685", "-142.48", "-146.1915", "-161.1933", "-162.565", "-188.5812", "-189.3436", "-190.19", "-242.423", "-248.849", "-273.9542", "-283.308", "-287.409", "-314.05", "-321.2", "-323.98", "-339.188", "-349.56", "-354.49", "-356.34", "-366.76", "-369.0731", "-372.72", "-375.63", "-418.84", "-419.1836", "-430.323", "-457.3485", "-476.696", "-492.38"], "source_dataset": "number_sorting", "source_index": 39}
Decrypt this Caesar cipher text: KEALZ VGWK AK LG UGFFWUL ZAK LZW OAJWK GX OZAUZ UGEEMFAUSLW OALZ ZAK HSJAK ESFKAGF. Provide only the decrypted text as your final answer.
SMITH DOES IS TO CONNECT HIS THE WIRES OF WHICH COMMUNICATE WITH HIS PARIS MANSION
caesar_cipher
{"cipher_text": "KEALZ VGWK AK LG UGFFWUL ZAK LZW OAJWK GX OZAUZ UGEEMFAUSLW OALZ ZAK HSJAK ESFKAGF", "clear_text": "SMITH DOES IS TO CONNECT HIS THE WIRES OF WHICH COMMUNICATE WITH HIS PARIS MANSION", "difficulty": {"rotation": [15, 25], "words": [15, 25]}, "num_words": 15, "rotation": 18, "source_dataset": "caesar_cipher", "source_index": 40}
Keep all numbers larger than 494.03 in this list: ['-40.47', '205.5132', '-150.2631', '300.0205', '-378.6881', '-44.05', '158.8160', '447.078', '-270.29', '460.86', '-311.405', '-129.938', '463.32', '-96.933', '55.400', '-339.5782', '138.46', '-494.355', '-352.3955', '-337.46', '341.1747', '-262.775', '299.403', '-373.3848', '256.86', '109.1002', '118.8354', '213.9433', '90.3746', '181.8130', '354.172', '498.445', '261.50', '390.4570', '-65.54', '347.3725', '214.7436', '301.1087', '-245.79', '175.976', '-335.295', '206.18', '217.8037', '386.398', '24.52', '150.8305', '227.232', '-166.26', '189.563', '-307.1717', '-380.9145', '-290.854', '224.86', '-99.3905', '-348.5035', '143.4322', '-461.127', '-338.873', '372.88'] Return the new list in the same format.
['498.445']
number_filtering
{"difficulty": {"decimals": [2, 4], "numbers": [50, 100], "value": [-500, 500]}, "filter_value": "494.03", "numbers": 59, "operation": "keep_larger", "original_numbers": ["-40.47", "205.5132", "-150.2631", "300.0205", "-378.6881", "-44.05", "158.8160", "447.078", "-270.29", "460.86", "-311.405", "-129.938", "463.32", "-96.933", "55.400", "-339.5782", "138.46", "-494.355", "-352.3955", "-337.46", "341.1747", "-262.775", "299.403", "-373.3848", "256.86", "109.1002", "118.8354", "213.9433", "90.3746", "181.8130", "354.172", "498.445", "261.50", "390.4570", "-65.54", "347.3725", "214.7436", "301.1087", "-245.79", "175.976", "-335.295", "206.18", "217.8037", "386.398", "24.52", "150.8305", "227.232", "-166.26", "189.563", "-307.1717", "-380.9145", "-290.854", "224.86", "-99.3905", "-348.5035", "143.4322", "-461.127", "-338.873", "372.88"], "result": ["498.445"], "source_dataset": "number_filtering", "source_index": 41}
Restore the correct order of words in the following sentence: available of the our polar Transform their regions, for snow-cap, send territory disposal; portion the of this energy relieved man's become heat will then at to the surplus a into use. a vast heat poles;
Transform into heat heat a a portion of of the the the surplus energy at our disposal; send this to poles; then polar regions, relieved their snow-cap, will become vast territory available for man's use.
sentence_reordering
{"difficulty": {"words_in_sentence": [20, 50]}, "source_dataset": "sentence_reordering", "source_index": 42, "word_count": 37}
Solve this cryptarithm: KGPGP PKAJP PQKJJ HJKMZ MJMMF ZAGG QKQGZ + QGG -------- HQJFGH Each letter stands for a unique digit (0-9). No leading letter can be zero. Provide a comma separated mapping from letters to digits that satisfies the equation in your final answer. Output format: "A=1,B=2,C=3" (without quotes)
A=5,F=9,G=4,H=3,J=0,K=8,M=2,P=7,Q=1,Z=6
cryptarithm
{"difficulty": {"words": [5, 10]}, "digit_to_letter": {"0": "J", "1": "Q", "2": "M", "3": "H", "4": "G", "5": "A", "6": "Z", "7": "P", "8": "K", "9": "F"}, "letter_to_digit": {"A": 5, "F": 9, "G": 4, "H": 3, "J": 0, "K": 8, "M": 2, "P": 7, "Q": 1, "Z": 6}, "letters": ["P", "F", "A", "H", "Q", "Z", "G", "K", "M", "J"], "result_letters": "HQJFGH", "source_dataset": "cryptarithm", "source_index": 43, "sum_number": 310943, "word_values": [84747, 78507, 71800, 30826, 20229, 6544, 18146, 144], "words_letters": ["KGPGP", "PKAJP", "PQKJJ", "HJKMZ", "MJMMF", "ZAGG", "QKQGZ", "QGG"]}
Given a matrix, your job is to generate a list of elements in spiral order, starting from the top-left element. The spiral order is clockwise, starting from the top-left corner. More precisely: - Start from the top-left corner and move right along the top row. - Move down along the right column. - Move left along the bottom row. - Move up along the left column. - Repeat the steps for the inner elements of the matrix until every entry is visited. Hint: Think of peeling the matrix layer by layer from the outside inward. Each layer forms a rectangular frame, and you traverse each frame clockwise starting from its top-left corner. Your output should be a space-separated list of integers, e.g. 1 2 3 4 5 6 For the matrix below, what is the list of elements in spiral order? 7 5 7 7 8 0 7 4 7 1 6 1 3 6 0 9 5 8 4 7 8 8 8 9 6 7 2 5 7 6 1 9 2 3 9 0 3 2 8 1 6 6 4 9 3 3 0 2 1 4 4 1 7 7 9 2 7 1 3 9 9 5 1 4 0 1 7 5 0 4 8 1 2 7 8 2 4 0 9 9 8 4 0 9 7 5 3 7 9 9 0 8 4 3 9 7 9 9 8 5 9 0 4 0 3 0 2 4 2 0 7 4 5 9 2 8 6 7 5 2 7 8 0 2 3 1 7 3 2 7 8 3 9 7 4 7 0 7 1 6 4 3 4 4 7 9 4 1 2 0 8 6 4 4 2 1 7 8 0 5 5 0 7 6 1 5 0 6 4 5 6 3 8 9 3 9 9 3 0 0 8 9 3 4 5 5 5 2 2 3 7 9 6 0 7 5 1 1 8 3 7 7 6 1 1 1 4 4 9 0 9 3 4 3 6 2 4 0 7 5 0 7 1 6 9 0 8 4 1 1 6 7 5 1 9 2 3 4 7 1 7 7 5 3 7 0 6 3 4 8 4 8 3 7 7 6 9 2 2 7 4 6 6 2 9 6 5 1 3 5 1 8 8 0 0 3 0 0 1 3 9 4 4 3 8 8 6 0 0 1 2 7 5 3 4 3 8 8 7 0 0 6 7 4 5 5 9 4 2 5 0 4 4 3 4 6 7 2 0 8 0 0 0 7 9 2 2 0 4 9 1 2 8 9 2 4 4 5 2 7 9 4 7 6 5 9 2 4 2 9 3 8 4 9 0 8 1 7 5 1 6 5 4 4 6 9 6 9 8 4 5 5 2 0 3 0 7 7 3 0 1 2 7 6 9 9 5 8 1 4 3 5 9 2 5 0 5 9 9 7 8 7 0 4 6 3 1 3 6 6 5 6 4 2 4 8 4 8 1 8 7 5 3 5 9 9 4 8 1 8 5 4 6 4 3 4 6 8 1 0 6 3 2 9 7 4 1 1 1 7 6 8 8 2 9 0 7 2 6 9 4 6 5 1 9 5 3 3 7 6 7 3 2 7 4 9 9 2 2 6 0 0 8 2 3 0 3 2 0 5 6 2 4 2 7 8 5 3 6 1 8 4 3 4 0 3 8 1 3 5 3 5 3 7 2 7 5 8 2 4 0 7 3 9 6 6 1 0 4 3 4 9 4 8 1 7 7 0 3 9 9 4 6 9 5 7 2 6 7 5 4 1 3 5 5 4 4 3 3 5 4 6 6 1 5 2 8 5 3 3 2 7 1 9 2 3 0 8 6 6 3 2 7 1 5 2 9 0 7 4 9 3 3 1 1 1 2 3 4 0 9 7 7 7 2 8 6 9 1 3 9 9 5 7 4 8 4 0 9 3 9 5 6 5 2
7 5 7 7 8 0 7 4 7 1 6 1 3 6 0 9 5 8 4 7 8 8 8 9 6 4 8 5 3 0 3 3 9 8 0 0 9 9 3 7 9 7 4 1 6 5 2 0 2 5 6 5 9 3 9 0 4 8 4 7 5 9 9 3 1 9 6 8 2 7 7 7 9 3 4 6 8 9 6 9 8 0 3 2 0 3 4 0 7 9 8 1 9 2 4 7 2 5 7 6 1 9 2 3 9 0 3 2 8 1 6 6 4 9 3 3 0 2 1 7 8 2 2 9 8 6 4 0 7 7 2 0 9 5 1 7 6 9 7 9 4 3 2 1 1 1 3 3 9 4 7 0 9 2 5 1 7 2 3 6 6 8 0 1 1 4 9 8 4 7 7 8 2 6 0 8 8 7 9 6 7 0 4 1 7 7 9 2 7 1 3 9 9 5 1 4 0 1 7 5 0 4 8 1 2 9 0 1 8 1 1 3 8 8 0 4 2 9 3 1 2 3 3 6 1 7 2 3 3 5 8 2 5 1 6 6 4 5 3 3 4 4 5 5 3 0 3 2 8 8 0 7 4 0 7 0 3 4 6 3 4 3 4 0 9 9 8 4 0 9 7 5 3 7 9 9 0 8 4 3 9 7 9 8 4 3 1 7 6 8 8 0 2 5 5 5 1 3 5 7 2 7 5 9 6 4 9 9 3 0 7 7 1 8 4 9 4 3 4 4 2 2 1 4 3 9 4 4 1 7 1 1 0 4 2 0 3 0 2 4 2 0 7 4 5 9 2 8 6 7 5 2 7 9 6 5 0 0 1 3 0 9 5 0 7 4 7 8 0 4 2 8 5 7 2 7 3 5 3 5 3 1 8 3 0 6 9 8 6 0 0 9 5 3 7 1 1 0 2 7 8 3 9 7 4 7 0 7 1 6 4 3 4 4 7 5 7 5 7 5 4 8 5 4 5 8 7 6 7 2 4 2 6 5 0 2 3 0 3 2 8 0 0 0 5 3 1 8 1 5 9 6 6 1 8 1 7 8 0 5 5 0 7 6 1 5 0 6 4 0 7 3 3 3 0 6 8 2 1 9 7 3 3 5 9 1 5 6 4 9 6 2 7 4 1 2 1 2 9 4 9 7 4 9 3 4 5 5 5 2 2 3 7 9 6 0 5 1 5 2 7 9 9 8 2 3 6 0 1 8 6 4 3 4 6 3 7 7 8 4 4 2 5 4 9 0 9 3 4 3 6 2 4 7 5 7 7 4 6 5 4 8 4 2 4 6 5 6 6 6 5 9 2 3 2 1 9 2 3 4 7 1 7 6 2 6 9 9 3 4 1 8 5 9 9 1 2 5 8 7 4 6 6 2 9 1 4 7 6 4 4 5 6 4 0 8 6 0 0 3 2 5 4 4 4
spiral_matrix
{"difficulty": {"n": [25, 50]}, "matrix": [[7, 5, 7, 7, 8, 0, 7, 4, 7, 1, 6, 1, 3, 6, 0, 9, 5, 8, 4, 7, 8, 8, 8, 9, 6], [7, 2, 5, 7, 6, 1, 9, 2, 3, 9, 0, 3, 2, 8, 1, 6, 6, 4, 9, 3, 3, 0, 2, 1, 4], [4, 1, 7, 7, 9, 2, 7, 1, 3, 9, 9, 5, 1, 4, 0, 1, 7, 5, 0, 4, 8, 1, 2, 7, 8], [2, 4, 0, 9, 9, 8, 4, 0, 9, 7, 5, 3, 7, 9, 9, 0, 8, 4, 3, 9, 7, 9, 9, 8, 5], [9, 0, 4, 0, 3, 0, 2, 4, 2, 0, 7, 4, 5, 9, 2, 8, 6, 7, 5, 2, 7, 8, 0, 2, 3], [1, 7, 3, 2, 7, 8, 3, 9, 7, 4, 7, 0, 7, 1, 6, 4, 3, 4, 4, 7, 9, 4, 1, 2, 0], [8, 6, 4, 4, 2, 1, 7, 8, 0, 5, 5, 0, 7, 6, 1, 5, 0, 6, 4, 5, 6, 3, 8, 9, 3], [9, 9, 3, 0, 0, 8, 9, 3, 4, 5, 5, 5, 2, 2, 3, 7, 9, 6, 0, 7, 5, 1, 1, 8, 3], [7, 7, 6, 1, 1, 1, 4, 4, 9, 0, 9, 3, 4, 3, 6, 2, 4, 0, 7, 5, 0, 7, 1, 6, 9], [0, 8, 4, 1, 1, 6, 7, 5, 1, 9, 2, 3, 4, 7, 1, 7, 7, 5, 3, 7, 0, 6, 3, 4, 8], [4, 8, 3, 7, 7, 6, 9, 2, 2, 7, 4, 6, 6, 2, 9, 6, 5, 1, 3, 5, 1, 8, 8, 0, 0], [3, 0, 0, 1, 3, 9, 4, 4, 3, 8, 8, 6, 0, 0, 1, 2, 7, 5, 3, 4, 3, 8, 8, 7, 0], [0, 6, 7, 4, 5, 5, 9, 4, 2, 5, 0, 4, 4, 3, 4, 6, 7, 2, 0, 8, 0, 0, 0, 7, 9], [2, 2, 0, 4, 9, 1, 2, 8, 9, 2, 4, 4, 5, 2, 7, 9, 4, 7, 6, 5, 9, 2, 4, 2, 9], [3, 8, 4, 9, 0, 8, 1, 7, 5, 1, 6, 5, 4, 4, 6, 9, 6, 9, 8, 4, 5, 5, 2, 0, 3], [0, 7, 7, 3, 0, 1, 2, 7, 6, 9, 9, 5, 8, 1, 4, 3, 5, 9, 2, 5, 0, 5, 9, 9, 7], [8, 7, 0, 4, 6, 3, 1, 3, 6, 6, 5, 6, 4, 2, 4, 8, 4, 8, 1, 8, 7, 5, 3, 5, 9], [9, 4, 8, 1, 8, 5, 4, 6, 4, 3, 4, 6, 8, 1, 0, 6, 3, 2, 9, 7, 4, 1, 1, 1, 7], [6, 8, 8, 2, 9, 0, 7, 2, 6, 9, 4, 6, 5, 1, 9, 5, 3, 3, 7, 6, 7, 3, 2, 7, 4], [9, 9, 2, 2, 6, 0, 0, 8, 2, 3, 0, 3, 2, 0, 5, 6, 2, 4, 2, 7, 8, 5, 3, 6, 1], [8, 4, 3, 4, 0, 3, 8, 1, 3, 5, 3, 5, 3, 7, 2, 7, 5, 8, 2, 4, 0, 7, 3, 9, 6], [6, 1, 0, 4, 3, 4, 9, 4, 8, 1, 7, 7, 0, 3, 9, 9, 4, 6, 9, 5, 7, 2, 6, 7, 5], [4, 1, 3, 5, 5, 4, 4, 3, 3, 5, 4, 6, 6, 1, 5, 2, 8, 5, 3, 3, 2, 7, 1, 9, 2], [3, 0, 8, 6, 6, 3, 2, 7, 1, 5, 2, 9, 0, 7, 4, 9, 3, 3, 1, 1, 1, 2, 3, 4, 0], [9, 7, 7, 7, 2, 8, 6, 9, 1, 3, 9, 9, 5, 7, 4, 8, 4, 0, 9, 3, 9, 5, 6, 5, 2]], "n": 25, "solution": [7, 5, 7, 7, 8, 0, 7, 4, 7, 1, 6, 1, 3, 6, 0, 9, 5, 8, 4, 7, 8, 8, 8, 9, 6, 4, 8, 5, 3, 0, 3, 3, 9, 8, 0, 0, 9, 9, 3, 7, 9, 7, 4, 1, 6, 5, 2, 0, 2, 5, 6, 5, 9, 3, 9, 0, 4, 8, 4, 7, 5, 9, 9, 3, 1, 9, 6, 8, 2, 7, 7, 7, 9, 3, 4, 6, 8, 9, 6, 9, 8, 0, 3, 2, 0, 3, 4, 0, 7, 9, 8, 1, 9, 2, 4, 7, 2, 5, 7, 6, 1, 9, 2, 3, 9, 0, 3, 2, 8, 1, 6, 6, 4, 9, 3, 3, 0, 2, 1, 7, 8, 2, 2, 9, 8, 6, 4, 0, 7, 7, 2, 0, 9, 5, 1, 7, 6, 9, 7, 9, 4, 3, 2, 1, 1, 1, 3, 3, 9, 4, 7, 0, 9, 2, 5, 1, 7, 2, 3, 6, 6, 8, 0, 1, 1, 4, 9, 8, 4, 7, 7, 8, 2, 6, 0, 8, 8, 7, 9, 6, 7, 0, 4, 1, 7, 7, 9, 2, 7, 1, 3, 9, 9, 5, 1, 4, 0, 1, 7, 5, 0, 4, 8, 1, 2, 9, 0, 1, 8, 1, 1, 3, 8, 8, 0, 4, 2, 9, 3, 1, 2, 3, 3, 6, 1, 7, 2, 3, 3, 5, 8, 2, 5, 1, 6, 6, 4, 5, 3, 3, 4, 4, 5, 5, 3, 0, 3, 2, 8, 8, 0, 7, 4, 0, 7, 0, 3, 4, 6, 3, 4, 3, 4, 0, 9, 9, 8, 4, 0, 9, 7, 5, 3, 7, 9, 9, 0, 8, 4, 3, 9, 7, 9, 8, 4, 3, 1, 7, 6, 8, 8, 0, 2, 5, 5, 5, 1, 3, 5, 7, 2, 7, 5, 9, 6, 4, 9, 9, 3, 0, 7, 7, 1, 8, 4, 9, 4, 3, 4, 4, 2, 2, 1, 4, 3, 9, 4, 4, 1, 7, 1, 1, 0, 4, 2, 0, 3, 0, 2, 4, 2, 0, 7, 4, 5, 9, 2, 8, 6, 7, 5, 2, 7, 9, 6, 5, 0, 0, 1, 3, 0, 9, 5, 0, 7, 4, 7, 8, 0, 4, 2, 8, 5, 7, 2, 7, 3, 5, 3, 5, 3, 1, 8, 3, 0, 6, 9, 8, 6, 0, 0, 9, 5, 3, 7, 1, 1, 0, 2, 7, 8, 3, 9, 7, 4, 7, 0, 7, 1, 6, 4, 3, 4, 4, 7, 5, 7, 5, 7, 5, 4, 8, 5, 4, 5, 8, 7, 6, 7, 2, 4, 2, 6, 5, 0, 2, 3, 0, 3, 2, 8, 0, 0, 0, 5, 3, 1, 8, 1, 5, 9, 6, 6, 1, 8, 1, 7, 8, 0, 5, 5, 0, 7, 6, 1, 5, 0, 6, 4, 0, 7, 3, 3, 3, 0, 6, 8, 2, 1, 9, 7, 3, 3, 5, 9, 1, 5, 6, 4, 9, 6, 2, 7, 4, 1, 2, 1, 2, 9, 4, 9, 7, 4, 9, 3, 4, 5, 5, 5, 2, 2, 3, 7, 9, 6, 0, 5, 1, 5, 2, 7, 9, 9, 8, 2, 3, 6, 0, 1, 8, 6, 4, 3, 4, 6, 3, 7, 7, 8, 4, 4, 2, 5, 4, 9, 0, 9, 3, 4, 3, 6, 2, 4, 7, 5, 7, 7, 4, 6, 5, 4, 8, 4, 2, 4, 6, 5, 6, 6, 6, 5, 9, 2, 3, 2, 1, 9, 2, 3, 4, 7, 1, 7, 6, 2, 6, 9, 9, 3, 4, 1, 8, 5, 9, 9, 1, 2, 5, 8, 7, 4, 6, 6, 2, 9, 1, 4, 7, 6, 4, 4, 5, 6, 4, 0, 8, 6, 0, 0, 3, 2, 5, 4, 4, 4], "source_dataset": "spiral_matrix", "source_index": 44}
Decrypt this Caesar cipher text: FK QEB JFOOLO LC QEB MELKLQBIBMELQB FP PBBK QEB PXJB ZEXJYBO XQ MXOFP TEFZE XMMBXOBA FK FQ QEFP JLOKFKD. Provide only the decrypted text as your final answer.
IN THE MIRROR OF THE PHONOTELEPHOTE IS SEEN THE SAME CHAMBER AT PARIS WHICH APPEARED IN IT THIS MORNING
caesar_cipher
{"cipher_text": "FK QEB JFOOLO LC QEB MELKLQBIBMELQB FP PBBK QEB PXJB ZEXJYBO XQ MXOFP TEFZE XMMBXOBA FK FQ QEFP JLOKFKD", "clear_text": "IN THE MIRROR OF THE PHONOTELEPHOTE IS SEEN THE SAME CHAMBER AT PARIS WHICH APPEARED IN IT THIS MORNING", "difficulty": {"rotation": [15, 25], "words": [15, 25]}, "num_words": 19, "rotation": 23, "source_dataset": "caesar_cipher", "source_index": 45}
How many times does the letter "c" appear in the text: "by Jules Verne and Michel Verne END OF THE PROJECT GUTENBERG EBOOK IN THE YEAR 2889 Updated editions will replace the previous one the old editions will be renamed"?
3
letter_counting
{"difficulty": {"words": [25, 50]}, "source_dataset": "letter_counting", "source_index": 46, "span": ["by", "Jules", "Verne", "and", "Michel", "Verne", "END", "OF", "THE", "PROJECT", "GUTENBERG", "EBOOK", "IN", "THE", "YEAR", "2889", "Updated", "editions", "will", "replace", "the", "previous", "one", "the", "old", "editions", "will", "be", "renamed"], "span_length": 29, "target_letter": "c"}
Given a binary string, return the minimum number of character swaps to make it alternating, or -1 if it is impossible. The string is called alternating if no two adjacent characters are equal. For example, the strings "010" and "1010" are alternating, while the string "0100" is not. Any two characters may be swapped, even if they are not adjacent. Now, determine the minimum number of swaps to make the following binary string alternating: 1010001101101100011011001111010011111011001011110101000101110101011111100100111110110001011000011001000101100011100011010011100100100001000010010010111010001011001100110010100000110111000100101101101100111100010001101100101001100110111100001010001100001001111011010
67
binary_alternation
{"difficulty": {"n": [50, 500]}, "n": 265, "solution": 67, "solvable": true, "source_dataset": "binary_alternation", "source_index": 47, "string": "1010001101101100011011001111010011111011001011110101000101110101011111100100111110110001011000011001000101100011100011010011100100100001000010010010111010001011001100110010100000110111000100101101101100111100010001101100101001100110111100001010001100001001111011010"}
Solve this cryptarithm: ZTQZ ZAJZ QTS OVTUJ OJT + ZKOSO ------- TKKQU Each letter stands for a unique digit (0-9). No leading letter can be zero. Provide a comma separated mapping from letters to digits that satisfies the equation in your final answer. Output format: "A=1,B=2,C=3" (without quotes)
A=2,J=7,K=3,O=4,Q=8,S=0,T=6,U=9,V=5,Z=1
cryptarithm
{"difficulty": {"words": [5, 10]}, "digit_to_letter": {"0": "S", "1": "Z", "2": "A", "3": "K", "4": "O", "5": "V", "6": "T", "7": "J", "8": "Q", "9": "U"}, "letter_to_digit": {"A": 2, "J": 7, "K": 3, "O": 4, "Q": 8, "S": 0, "T": 6, "U": 9, "V": 5, "Z": 1}, "letters": ["O", "T", "K", "U", "A", "S", "V", "Q", "J", "Z"], "result_letters": "TKKQU", "source_dataset": "cryptarithm", "source_index": 48, "sum_number": 63389, "word_values": [1681, 1271, 860, 45697, 476, 13404], "words_letters": ["ZTQZ", "ZAJZ", "QTS", "OVTUJ", "OJT", "ZKOSO"]}
Given a binary string, return the minimum number of character swaps to make it alternating, or -1 if it is impossible. The string is called alternating if no two adjacent characters are equal. For example, the strings "010" and "1010" are alternating, while the string "0100" is not. Any two characters may be swapped, even if they are not adjacent. Now, determine the minimum number of swaps to make the following binary string alternating: 01000010110001011110100101100010001100011010000110111100011001010001111000110010100101001000000001010110010101110001100011000110111100001010000111111100100110010101011110010101100101111010011000011001011110111110101010111110111011101101111101000011001000111000000001110011011011010010111110001010100011011111001100001010100100101
84
binary_alternation
{"difficulty": {"n": [50, 500]}, "n": 329, "solution": 84, "solvable": true, "source_dataset": "binary_alternation", "source_index": 49, "string": "01000010110001011110100101100010001100011010000110111100011001010001111000110010100101001000000001010110010101110001100011000110111100001010000111111100100110010101011110010101100101111010011000011001011110111110101010111110111011101101111101000011001000111000000001110011011011010010111110001010100011011111001100001010100100101"}
Your task is to unsramble words in a sentence. For each word in a sentence, the letter may have been randomly shuffled. Your task is to unscramble the words. The order of the words in the sentence is preserved. Moreover, the style of the sentence is preserved (i.e. punctuation, capitalization, new lines, etc.). Your output should be a sentence with the words unscrambled. Now, unscramble these words: BRHECA CTONTACR CEXEPT THOSE VPROIDED PGAAPRARH GAREE TOUNNAFIOD TADERMARK OWNER BTSTRDUOIIR NURED AGRTEEMNE LEAILB ACTALU EIRTCD IRDINECT OCEUQESNTAINL UIVITPNE NITNDEILAC MGDAEAS IOTECN SOYBSIILITP DEMAGA LTMIEID IGRHT REPLATEMNCE REFUND eiscovdr tefedc ctenerolic wihnit
BREACH CONTRACT EXCEPT THOSE PROVIDED PARAGRAPH AGREE FOUNDATION TRADEMARK OWNER DISTRIBUTOR UNDER AGREEMENT LIABLE ACTUAL DIRECT INDIRECT CONSEQUENTIAL PUNITIVE INCIDENTAL DAMAGES NOTICE POSSIBILITY DAMAGE LIMITED RIGHT REPLACEMENT REFUND discover defect electronic within
letter_jumble
{"corruption_level": 0.48594266827692817, "difficulty": {"corruption_level": [0.3, 0.6], "word_len": [5, 30], "words": [25, 50]}, "num_words": 32, "original_words": ["BREACH", "CONTRACT", "EXCEPT", "THOSE", "PROVIDED", "PARAGRAPH", "AGREE", "FOUNDATION", "TRADEMARK", "OWNER", "DISTRIBUTOR", "UNDER", "AGREEMENT", "LIABLE", "ACTUAL", "DIRECT", "INDIRECT", "CONSEQUENTIAL", "PUNITIVE", "INCIDENTAL", "DAMAGES", "NOTICE", "POSSIBILITY", "DAMAGE", "LIMITED", "RIGHT", "REPLACEMENT", "REFUND", "discover", "defect", "electronic", "within"], "scrambled_words": ["BRHECA", "CTONTACR", "CEXEPT", "THOSE", "VPROIDED", "PGAAPRARH", "GAREE", "TOUNNAFIOD", "TADERMARK", "OWNER", "BTSTRDUOIIR", "NURED", "AGRTEEMNE", "LEAILB", "ACTALU", "EIRTCD", "IRDINECT", "OCEUQESNTAINL", "UIVITPNE", "NITNDEILAC", "MGDAEAS", "IOTECN", "SOYBSIILITP", "DEMAGA", "LTMIEID", "IGRHT", "REPLATEMNCE", "REFUND", "eiscovdr", "tefedc", "ctenerolic", "wihnit"], "source_dataset": "letter_jumble", "source_index": 50}
Transform the word ladder 'FOE' to 'SOU' by changing one letter at a time. Provide your answer as a comma-separated sequence of uppercase letters without spaces. Each step must be a valid English word.
FOE,FOX,SOX,SOU
word_ladder
{"chain_length": 4, "difficulty": {"word_length": [3, 5]}, "end_word": "SOU", "source_dataset": "word_ladder", "source_index": 51, "start_word": "FOE", "word_length": 3}
Your task is, given a list of letters, to form a valid palindrome. A palindrome is a phrase that reads the same forwards and backwards. If there are multiple possible answers, only respond with one of them. You must use all the letters provided. Your output should be a single string, with no spaces or punctuation. Now, form a valid palindrome using the following letters: n, b, i, h, a, v, h, m, h, j, j, q, n, d, h, l, y, f, l, a, w, g, h, h, v, m, q, w, r, v, g, y, j, i, j, m, d, m, f, f, i, m, i, b, m, r, h, h, f, e, e
rvhmjlabdhyhifjiwneqfgmmhvhmmgfqenwijfihyhdbaljmhvr
palindrome_generation
{"difficulty": {"length": [50, 100]}, "generated_palindrome": "rvhmjlabdhyhifjiwneqfgmmhvhmmgfqenwijfihyhdbaljmhvr", "length": 51, "letters": ["n", "b", "i", "h", "a", "v", "h", "m", "h", "j", "j", "q", "n", "d", "h", "l", "y", "f", "l", "a", "w", "g", "h", "h", "v", "m", "q", "w", "r", "v", "g", "y", "j", "i", "j", "m", "d", "m", "f", "f", "i", "m", "i", "b", "m", "r", "h", "h", "f", "e", "e"], "source_dataset": "palindrome_generation", "source_index": 52}
Spell this word backward (example: sun -> nus): robing
gnibor
spell_backward
{"difficulty": {"word_len": [5, 20]}, "source_dataset": "spell_backward", "source_index": 53, "word": "robing", "word_len": 6}
You are a police officer. A maniac has planted a bomb next to a public fountain. To defuse the bomb, you must solve a puzzle. The puzzle is solved when you fill any of the available jugs with the target amount of water. You have three move types: 'fill', 'empty' and 'pour'. To fill Jug A, you 'fill A'. To empty Jug B, you 'empty B'. To pour the contents of Jug A into Jug B, you 'pour A->B'. All jugs are empty to begin with. The empty jugs hold this many litres of water: A:13, B:7, C:7, D:13 And your target is: 10 litres. How do you defuse the bomb? Reply as a JSON-parsable list of moves which result in any of the jugs being filled with the target amount.
["fill A", "pour A->B", "pour A->C", "fill A", "pour A->C", "empty B", "pour A->B", "empty B", "pour A->B", "fill A", "pour A->B", "empty B", "pour A->B", "empty B", "pour A->B", "fill A", "pour A->B"]
jugs
{"difficulty": {"difficulty": 10, "num_jugs": 4}, "puzzle": {"jug_capacities": [13, 7, 7, 13], "min_moves": 17, "target": 10}, "source_dataset": "jugs", "source_index": 54}
Solve this cryptarithm: ARV QVWUZ UQV AQLW + WLWA ------- WQPWP Each letter stands for a unique digit (0-9). No leading letter can be zero. Provide a comma separated mapping from letters to digits that satisfies the equation in your final answer. Output format: "A=1,B=2,C=3" (without quotes)
A=1,L=7,P=4,Q=2,R=0,U=9,V=6,W=3,Z=8
cryptarithm
{"difficulty": {"words": [5, 10]}, "digit_to_letter": {"0": "R", "1": "A", "2": "Q", "3": "W", "4": "P", "6": "V", "7": "L", "8": "Z", "9": "U"}, "letter_to_digit": {"A": 1, "L": 7, "P": 4, "Q": 2, "R": 0, "U": 9, "V": 6, "W": 3, "Z": 8}, "letters": ["U", "V", "W", "P", "Z", "L", "R", "Q", "A"], "result_letters": "WQPWP", "source_dataset": "cryptarithm", "source_index": 55, "sum_number": 32434, "word_values": [106, 26398, 926, 1273, 3731], "words_letters": ["ARV", "QVWUZ", "UQV", "AQLW", "WLWA"]}
You are a police officer. A maniac has planted a bomb next to a public fountain. To defuse the bomb, you must solve a puzzle. The puzzle is solved when you fill any of the available jugs with the target amount of water. You have three move types: 'fill', 'empty' and 'pour'. To fill Jug A, you 'fill A'. To empty Jug B, you 'empty B'. To pour the contents of Jug A into Jug B, you 'pour A->B'. All jugs are empty to begin with. The empty jugs hold this many litres of water: A:9, B:13, C:11, D:13 And your target is: 12 litres. How do you defuse the bomb? Reply as a JSON-parsable list of moves which result in any of the jugs being filled with the target amount.
["fill B", "pour B->A", "empty A", "pour B->A", "fill B", "pour B->A", "empty A", "pour B->A", "fill B", "pour B->A"]
jugs
{"difficulty": {"difficulty": 10, "num_jugs": 4}, "puzzle": {"jug_capacities": [9, 13, 11, 13], "min_moves": 10, "target": 12}, "source_dataset": "jugs", "source_index": 56}
How many times does the letter "a" appear in the text: "I shall have succeeded in solving the problem Indeed it may take only a few days And then Then sir I shall simply have determined"?
9
letter_counting
{"difficulty": {"words": [25, 50]}, "source_dataset": "letter_counting", "source_index": 57, "span": ["I", "shall", "have", "succeeded", "in", "solving", "the", "problem", "Indeed", "it", "may", "take", "only", "a", "few", "days", "And", "then", "Then", "sir", "I", "shall", "simply", "have", "determined"], "span_length": 25, "target_letter": "a"}
Decrypt this Caesar cipher text: NPMHCAR CZMMIQ YPC MDRCL APCYRCB DPMK QCTCPYJ NPGLRCB YJJ MD UFGAF YPC AMLDGPKCB YQ LMR NPMRCARCB ZW AMNWPGEFR GL RFC S. Provide only the decrypted text as your final answer.
PROJECT EBOOKS ARE OFTEN CREATED FROM SEVERAL PRINTED ALL OF WHICH ARE CONFIRMED AS NOT PROTECTED BY COPYRIGHT IN THE U
caesar_cipher
{"cipher_text": "NPMHCAR CZMMIQ YPC MDRCL APCYRCB DPMK QCTCPYJ NPGLRCB YJJ MD UFGAF YPC AMLDGPKCB YQ LMR NPMRCARCB ZW AMNWPGEFR GL RFC S", "clear_text": "PROJECT EBOOKS ARE OFTEN CREATED FROM SEVERAL PRINTED ALL OF WHICH ARE CONFIRMED AS NOT PROTECTED BY COPYRIGHT IN THE U", "difficulty": {"rotation": [15, 25], "words": [15, 25]}, "num_words": 21, "rotation": 24, "source_dataset": "caesar_cipher", "source_index": 58}
Given a string, partition it such that every substring is a palindrome. A palindrome is a word that reads the same backward as forward. You may return all possible palindrome partitioning in any order. Your output should be a list of lists, where each list represents a palindrome partition, e.g. [["a","a","b"],["aa","b"]]. Partition the following string into palindromes: ppqeeq
[["p", "p", "q", "e", "e", "q"], ["p", "p", "q", "ee", "q"], ["p", "p", "qeeq"], ["pp", "q", "e", "e", "q"], ["pp", "q", "ee", "q"], ["pp", "qeeq"]]
palindrome_partitioning
{"difficulty": {"string_len": [5, 15], "substring_palindrome_len": [1, 5]}, "solution": [["p", "p", "q", "e", "e", "q"], ["p", "p", "q", "ee", "q"], ["p", "p", "qeeq"], ["pp", "q", "e", "e", "q"], ["pp", "q", "ee", "q"], ["pp", "qeeq"]], "source_dataset": "palindrome_partitioning", "source_index": 59, "string": "ppqeeq", "string_len": 6}
Count how many prime numbers there are between 18553 and 41992 (inclusive) ?
2267
count_primes
{"difficulty": {"n": [10000, 50000]}, "end": 41992, "n": [18553, 41992], "primes": [18553, 18583, 18587, 18593, 18617, 18637, 18661, 18671, 18679, 18691, 18701, 18713, 18719, 18731, 18743, 18749, 18757, 18773, 18787, 18793, 18797, 18803, 18839, 18859, 18869, 18899, 18911, 18913, 18917, 18919, 18947, 18959, 18973, 18979, 19001, 19009, 19013, 19031, 19037, 19051, 19069, 19073, 19079, 19081, 19087, 19121, 19139, 19141, 19157, 19163, 19181, 19183, 19207, 19211, 19213, 19219, 19231, 19237, 19249, 19259, 19267, 19273, 19289, 19301, 19309, 19319, 19333, 19373, 19379, 19381, 19387, 19391, 19403, 19417, 19421, 19423, 19427, 19429, 19433, 19441, 19447, 19457, 19463, 19469, 19471, 19477, 19483, 19489, 19501, 19507, 19531, 19541, 19543, 19553, 19559, 19571, 19577, 19583, 19597, 19603, 19609, 19661, 19681, 19687, 19697, 19699, 19709, 19717, 19727, 19739, 19751, 19753, 19759, 19763, 19777, 19793, 19801, 19813, 19819, 19841, 19843, 19853, 19861, 19867, 19889, 19891, 19913, 19919, 19927, 19937, 19949, 19961, 19963, 19973, 19979, 19991, 19993, 19997, 20011, 20021, 20023, 20029, 20047, 20051, 20063, 20071, 20089, 20101, 20107, 20113, 20117, 20123, 20129, 20143, 20147, 20149, 20161, 20173, 20177, 20183, 20201, 20219, 20231, 20233, 20249, 20261, 20269, 20287, 20297, 20323, 20327, 20333, 20341, 20347, 20353, 20357, 20359, 20369, 20389, 20393, 20399, 20407, 20411, 20431, 20441, 20443, 20477, 20479, 20483, 20507, 20509, 20521, 20533, 20543, 20549, 20551, 20563, 20593, 20599, 20611, 20627, 20639, 20641, 20663, 20681, 20693, 20707, 20717, 20719, 20731, 20743, 20747, 20749, 20753, 20759, 20771, 20773, 20789, 20807, 20809, 20849, 20857, 20873, 20879, 20887, 20897, 20899, 20903, 20921, 20929, 20939, 20947, 20959, 20963, 20981, 20983, 21001, 21011, 21013, 21017, 21019, 21023, 21031, 21059, 21061, 21067, 21089, 21101, 21107, 21121, 21139, 21143, 21149, 21157, 21163, 21169, 21179, 21187, 21191, 21193, 21211, 21221, 21227, 21247, 21269, 21277, 21283, 21313, 21317, 21319, 21323, 21341, 21347, 21377, 21379, 21383, 21391, 21397, 21401, 21407, 21419, 21433, 21467, 21481, 21487, 21491, 21493, 21499, 21503, 21517, 21521, 21523, 21529, 21557, 21559, 21563, 21569, 21577, 21587, 21589, 21599, 21601, 21611, 21613, 21617, 21647, 21649, 21661, 21673, 21683, 21701, 21713, 21727, 21737, 21739, 21751, 21757, 21767, 21773, 21787, 21799, 21803, 21817, 21821, 21839, 21841, 21851, 21859, 21863, 21871, 21881, 21893, 21911, 21929, 21937, 21943, 21961, 21977, 21991, 21997, 22003, 22013, 22027, 22031, 22037, 22039, 22051, 22063, 22067, 22073, 22079, 22091, 22093, 22109, 22111, 22123, 22129, 22133, 22147, 22153, 22157, 22159, 22171, 22189, 22193, 22229, 22247, 22259, 22271, 22273, 22277, 22279, 22283, 22291, 22303, 22307, 22343, 22349, 22367, 22369, 22381, 22391, 22397, 22409, 22433, 22441, 22447, 22453, 22469, 22481, 22483, 22501, 22511, 22531, 22541, 22543, 22549, 22567, 22571, 22573, 22613, 22619, 22621, 22637, 22639, 22643, 22651, 22669, 22679, 22691, 22697, 22699, 22709, 22717, 22721, 22727, 22739, 22741, 22751, 22769, 22777, 22783, 22787, 22807, 22811, 22817, 22853, 22859, 22861, 22871, 22877, 22901, 22907, 22921, 22937, 22943, 22961, 22963, 22973, 22993, 23003, 23011, 23017, 23021, 23027, 23029, 23039, 23041, 23053, 23057, 23059, 23063, 23071, 23081, 23087, 23099, 23117, 23131, 23143, 23159, 23167, 23173, 23189, 23197, 23201, 23203, 23209, 23227, 23251, 23269, 23279, 23291, 23293, 23297, 23311, 23321, 23327, 23333, 23339, 23357, 23369, 23371, 23399, 23417, 23431, 23447, 23459, 23473, 23497, 23509, 23531, 23537, 23539, 23549, 23557, 23561, 23563, 23567, 23581, 23593, 23599, 23603, 23609, 23623, 23627, 23629, 23633, 23663, 23669, 23671, 23677, 23687, 23689, 23719, 23741, 23743, 23747, 23753, 23761, 23767, 23773, 23789, 23801, 23813, 23819, 23827, 23831, 23833, 23857, 23869, 23873, 23879, 23887, 23893, 23899, 23909, 23911, 23917, 23929, 23957, 23971, 23977, 23981, 23993, 24001, 24007, 24019, 24023, 24029, 24043, 24049, 24061, 24071, 24077, 24083, 24091, 24097, 24103, 24107, 24109, 24113, 24121, 24133, 24137, 24151, 24169, 24179, 24181, 24197, 24203, 24223, 24229, 24239, 24247, 24251, 24281, 24317, 24329, 24337, 24359, 24371, 24373, 24379, 24391, 24407, 24413, 24419, 24421, 24439, 24443, 24469, 24473, 24481, 24499, 24509, 24517, 24527, 24533, 24547, 24551, 24571, 24593, 24611, 24623, 24631, 24659, 24671, 24677, 24683, 24691, 24697, 24709, 24733, 24749, 24763, 24767, 24781, 24793, 24799, 24809, 24821, 24841, 24847, 24851, 24859, 24877, 24889, 24907, 24917, 24919, 24923, 24943, 24953, 24967, 24971, 24977, 24979, 24989, 25013, 25031, 25033, 25037, 25057, 25073, 25087, 25097, 25111, 25117, 25121, 25127, 25147, 25153, 25163, 25169, 25171, 25183, 25189, 25219, 25229, 25237, 25243, 25247, 25253, 25261, 25301, 25303, 25307, 25309, 25321, 25339, 25343, 25349, 25357, 25367, 25373, 25391, 25409, 25411, 25423, 25439, 25447, 25453, 25457, 25463, 25469, 25471, 25523, 25537, 25541, 25561, 25577, 25579, 25583, 25589, 25601, 25603, 25609, 25621, 25633, 25639, 25643, 25657, 25667, 25673, 25679, 25693, 25703, 25717, 25733, 25741, 25747, 25759, 25763, 25771, 25793, 25799, 25801, 25819, 25841, 25847, 25849, 25867, 25873, 25889, 25903, 25913, 25919, 25931, 25933, 25939, 25943, 25951, 25969, 25981, 25997, 25999, 26003, 26017, 26021, 26029, 26041, 26053, 26083, 26099, 26107, 26111, 26113, 26119, 26141, 26153, 26161, 26171, 26177, 26183, 26189, 26203, 26209, 26227, 26237, 26249, 26251, 26261, 26263, 26267, 26293, 26297, 26309, 26317, 26321, 26339, 26347, 26357, 26371, 26387, 26393, 26399, 26407, 26417, 26423, 26431, 26437, 26449, 26459, 26479, 26489, 26497, 26501, 26513, 26539, 26557, 26561, 26573, 26591, 26597, 26627, 26633, 26641, 26647, 26669, 26681, 26683, 26687, 26693, 26699, 26701, 26711, 26713, 26717, 26723, 26729, 26731, 26737, 26759, 26777, 26783, 26801, 26813, 26821, 26833, 26839, 26849, 26861, 26863, 26879, 26881, 26891, 26893, 26903, 26921, 26927, 26947, 26951, 26953, 26959, 26981, 26987, 26993, 27011, 27017, 27031, 27043, 27059, 27061, 27067, 27073, 27077, 27091, 27103, 27107, 27109, 27127, 27143, 27179, 27191, 27197, 27211, 27239, 27241, 27253, 27259, 27271, 27277, 27281, 27283, 27299, 27329, 27337, 27361, 27367, 27397, 27407, 27409, 27427, 27431, 27437, 27449, 27457, 27479, 27481, 27487, 27509, 27527, 27529, 27539, 27541, 27551, 27581, 27583, 27611, 27617, 27631, 27647, 27653, 27673, 27689, 27691, 27697, 27701, 27733, 27737, 27739, 27743, 27749, 27751, 27763, 27767, 27773, 27779, 27791, 27793, 27799, 27803, 27809, 27817, 27823, 27827, 27847, 27851, 27883, 27893, 27901, 27917, 27919, 27941, 27943, 27947, 27953, 27961, 27967, 27983, 27997, 28001, 28019, 28027, 28031, 28051, 28057, 28069, 28081, 28087, 28097, 28099, 28109, 28111, 28123, 28151, 28163, 28181, 28183, 28201, 28211, 28219, 28229, 28277, 28279, 28283, 28289, 28297, 28307, 28309, 28319, 28349, 28351, 28387, 28393, 28403, 28409, 28411, 28429, 28433, 28439, 28447, 28463, 28477, 28493, 28499, 28513, 28517, 28537, 28541, 28547, 28549, 28559, 28571, 28573, 28579, 28591, 28597, 28603, 28607, 28619, 28621, 28627, 28631, 28643, 28649, 28657, 28661, 28663, 28669, 28687, 28697, 28703, 28711, 28723, 28729, 28751, 28753, 28759, 28771, 28789, 28793, 28807, 28813, 28817, 28837, 28843, 28859, 28867, 28871, 28879, 28901, 28909, 28921, 28927, 28933, 28949, 28961, 28979, 29009, 29017, 29021, 29023, 29027, 29033, 29059, 29063, 29077, 29101, 29123, 29129, 29131, 29137, 29147, 29153, 29167, 29173, 29179, 29191, 29201, 29207, 29209, 29221, 29231, 29243, 29251, 29269, 29287, 29297, 29303, 29311, 29327, 29333, 29339, 29347, 29363, 29383, 29387, 29389, 29399, 29401, 29411, 29423, 29429, 29437, 29443, 29453, 29473, 29483, 29501, 29527, 29531, 29537, 29567, 29569, 29573, 29581, 29587, 29599, 29611, 29629, 29633, 29641, 29663, 29669, 29671, 29683, 29717, 29723, 29741, 29753, 29759, 29761, 29789, 29803, 29819, 29833, 29837, 29851, 29863, 29867, 29873, 29879, 29881, 29917, 29921, 29927, 29947, 29959, 29983, 29989, 30011, 30013, 30029, 30047, 30059, 30071, 30089, 30091, 30097, 30103, 30109, 30113, 30119, 30133, 30137, 30139, 30161, 30169, 30181, 30187, 30197, 30203, 30211, 30223, 30241, 30253, 30259, 30269, 30271, 30293, 30307, 30313, 30319, 30323, 30341, 30347, 30367, 30389, 30391, 30403, 30427, 30431, 30449, 30467, 30469, 30491, 30493, 30497, 30509, 30517, 30529, 30539, 30553, 30557, 30559, 30577, 30593, 30631, 30637, 30643, 30649, 30661, 30671, 30677, 30689, 30697, 30703, 30707, 30713, 30727, 30757, 30763, 30773, 30781, 30803, 30809, 30817, 30829, 30839, 30841, 30851, 30853, 30859, 30869, 30871, 30881, 30893, 30911, 30931, 30937, 30941, 30949, 30971, 30977, 30983, 31013, 31019, 31033, 31039, 31051, 31063, 31069, 31079, 31081, 31091, 31121, 31123, 31139, 31147, 31151, 31153, 31159, 31177, 31181, 31183, 31189, 31193, 31219, 31223, 31231, 31237, 31247, 31249, 31253, 31259, 31267, 31271, 31277, 31307, 31319, 31321, 31327, 31333, 31337, 31357, 31379, 31387, 31391, 31393, 31397, 31469, 31477, 31481, 31489, 31511, 31513, 31517, 31531, 31541, 31543, 31547, 31567, 31573, 31583, 31601, 31607, 31627, 31643, 31649, 31657, 31663, 31667, 31687, 31699, 31721, 31723, 31727, 31729, 31741, 31751, 31769, 31771, 31793, 31799, 31817, 31847, 31849, 31859, 31873, 31883, 31891, 31907, 31957, 31963, 31973, 31981, 31991, 32003, 32009, 32027, 32029, 32051, 32057, 32059, 32063, 32069, 32077, 32083, 32089, 32099, 32117, 32119, 32141, 32143, 32159, 32173, 32183, 32189, 32191, 32203, 32213, 32233, 32237, 32251, 32257, 32261, 32297, 32299, 32303, 32309, 32321, 32323, 32327, 32341, 32353, 32359, 32363, 32369, 32371, 32377, 32381, 32401, 32411, 32413, 32423, 32429, 32441, 32443, 32467, 32479, 32491, 32497, 32503, 32507, 32531, 32533, 32537, 32561, 32563, 32569, 32573, 32579, 32587, 32603, 32609, 32611, 32621, 32633, 32647, 32653, 32687, 32693, 32707, 32713, 32717, 32719, 32749, 32771, 32779, 32783, 32789, 32797, 32801, 32803, 32831, 32833, 32839, 32843, 32869, 32887, 32909, 32911, 32917, 32933, 32939, 32941, 32957, 32969, 32971, 32983, 32987, 32993, 32999, 33013, 33023, 33029, 33037, 33049, 33053, 33071, 33073, 33083, 33091, 33107, 33113, 33119, 33149, 33151, 33161, 33179, 33181, 33191, 33199, 33203, 33211, 33223, 33247, 33287, 33289, 33301, 33311, 33317, 33329, 33331, 33343, 33347, 33349, 33353, 33359, 33377, 33391, 33403, 33409, 33413, 33427, 33457, 33461, 33469, 33479, 33487, 33493, 33503, 33521, 33529, 33533, 33547, 33563, 33569, 33577, 33581, 33587, 33589, 33599, 33601, 33613, 33617, 33619, 33623, 33629, 33637, 33641, 33647, 33679, 33703, 33713, 33721, 33739, 33749, 33751, 33757, 33767, 33769, 33773, 33791, 33797, 33809, 33811, 33827, 33829, 33851, 33857, 33863, 33871, 33889, 33893, 33911, 33923, 33931, 33937, 33941, 33961, 33967, 33997, 34019, 34031, 34033, 34039, 34057, 34061, 34123, 34127, 34129, 34141, 34147, 34157, 34159, 34171, 34183, 34211, 34213, 34217, 34231, 34253, 34259, 34261, 34267, 34273, 34283, 34297, 34301, 34303, 34313, 34319, 34327, 34337, 34351, 34361, 34367, 34369, 34381, 34403, 34421, 34429, 34439, 34457, 34469, 34471, 34483, 34487, 34499, 34501, 34511, 34513, 34519, 34537, 34543, 34549, 34583, 34589, 34591, 34603, 34607, 34613, 34631, 34649, 34651, 34667, 34673, 34679, 34687, 34693, 34703, 34721, 34729, 34739, 34747, 34757, 34759, 34763, 34781, 34807, 34819, 34841, 34843, 34847, 34849, 34871, 34877, 34883, 34897, 34913, 34919, 34939, 34949, 34961, 34963, 34981, 35023, 35027, 35051, 35053, 35059, 35069, 35081, 35083, 35089, 35099, 35107, 35111, 35117, 35129, 35141, 35149, 35153, 35159, 35171, 35201, 35221, 35227, 35251, 35257, 35267, 35279, 35281, 35291, 35311, 35317, 35323, 35327, 35339, 35353, 35363, 35381, 35393, 35401, 35407, 35419, 35423, 35437, 35447, 35449, 35461, 35491, 35507, 35509, 35521, 35527, 35531, 35533, 35537, 35543, 35569, 35573, 35591, 35593, 35597, 35603, 35617, 35671, 35677, 35729, 35731, 35747, 35753, 35759, 35771, 35797, 35801, 35803, 35809, 35831, 35837, 35839, 35851, 35863, 35869, 35879, 35897, 35899, 35911, 35923, 35933, 35951, 35963, 35969, 35977, 35983, 35993, 35999, 36007, 36011, 36013, 36017, 36037, 36061, 36067, 36073, 36083, 36097, 36107, 36109, 36131, 36137, 36151, 36161, 36187, 36191, 36209, 36217, 36229, 36241, 36251, 36263, 36269, 36277, 36293, 36299, 36307, 36313, 36319, 36341, 36343, 36353, 36373, 36383, 36389, 36433, 36451, 36457, 36467, 36469, 36473, 36479, 36493, 36497, 36523, 36527, 36529, 36541, 36551, 36559, 36563, 36571, 36583, 36587, 36599, 36607, 36629, 36637, 36643, 36653, 36671, 36677, 36683, 36691, 36697, 36709, 36713, 36721, 36739, 36749, 36761, 36767, 36779, 36781, 36787, 36791, 36793, 36809, 36821, 36833, 36847, 36857, 36871, 36877, 36887, 36899, 36901, 36913, 36919, 36923, 36929, 36931, 36943, 36947, 36973, 36979, 36997, 37003, 37013, 37019, 37021, 37039, 37049, 37057, 37061, 37087, 37097, 37117, 37123, 37139, 37159, 37171, 37181, 37189, 37199, 37201, 37217, 37223, 37243, 37253, 37273, 37277, 37307, 37309, 37313, 37321, 37337, 37339, 37357, 37361, 37363, 37369, 37379, 37397, 37409, 37423, 37441, 37447, 37463, 37483, 37489, 37493, 37501, 37507, 37511, 37517, 37529, 37537, 37547, 37549, 37561, 37567, 37571, 37573, 37579, 37589, 37591, 37607, 37619, 37633, 37643, 37649, 37657, 37663, 37691, 37693, 37699, 37717, 37747, 37781, 37783, 37799, 37811, 37813, 37831, 37847, 37853, 37861, 37871, 37879, 37889, 37897, 37907, 37951, 37957, 37963, 37967, 37987, 37991, 37993, 37997, 38011, 38039, 38047, 38053, 38069, 38083, 38113, 38119, 38149, 38153, 38167, 38177, 38183, 38189, 38197, 38201, 38219, 38231, 38237, 38239, 38261, 38273, 38281, 38287, 38299, 38303, 38317, 38321, 38327, 38329, 38333, 38351, 38371, 38377, 38393, 38431, 38447, 38449, 38453, 38459, 38461, 38501, 38543, 38557, 38561, 38567, 38569, 38593, 38603, 38609, 38611, 38629, 38639, 38651, 38653, 38669, 38671, 38677, 38693, 38699, 38707, 38711, 38713, 38723, 38729, 38737, 38747, 38749, 38767, 38783, 38791, 38803, 38821, 38833, 38839, 38851, 38861, 38867, 38873, 38891, 38903, 38917, 38921, 38923, 38933, 38953, 38959, 38971, 38977, 38993, 39019, 39023, 39041, 39043, 39047, 39079, 39089, 39097, 39103, 39107, 39113, 39119, 39133, 39139, 39157, 39161, 39163, 39181, 39191, 39199, 39209, 39217, 39227, 39229, 39233, 39239, 39241, 39251, 39293, 39301, 39313, 39317, 39323, 39341, 39343, 39359, 39367, 39371, 39373, 39383, 39397, 39409, 39419, 39439, 39443, 39451, 39461, 39499, 39503, 39509, 39511, 39521, 39541, 39551, 39563, 39569, 39581, 39607, 39619, 39623, 39631, 39659, 39667, 39671, 39679, 39703, 39709, 39719, 39727, 39733, 39749, 39761, 39769, 39779, 39791, 39799, 39821, 39827, 39829, 39839, 39841, 39847, 39857, 39863, 39869, 39877, 39883, 39887, 39901, 39929, 39937, 39953, 39971, 39979, 39983, 39989, 40009, 40013, 40031, 40037, 40039, 40063, 40087, 40093, 40099, 40111, 40123, 40127, 40129, 40151, 40153, 40163, 40169, 40177, 40189, 40193, 40213, 40231, 40237, 40241, 40253, 40277, 40283, 40289, 40343, 40351, 40357, 40361, 40387, 40423, 40427, 40429, 40433, 40459, 40471, 40483, 40487, 40493, 40499, 40507, 40519, 40529, 40531, 40543, 40559, 40577, 40583, 40591, 40597, 40609, 40627, 40637, 40639, 40693, 40697, 40699, 40709, 40739, 40751, 40759, 40763, 40771, 40787, 40801, 40813, 40819, 40823, 40829, 40841, 40847, 40849, 40853, 40867, 40879, 40883, 40897, 40903, 40927, 40933, 40939, 40949, 40961, 40973, 40993, 41011, 41017, 41023, 41039, 41047, 41051, 41057, 41077, 41081, 41113, 41117, 41131, 41141, 41143, 41149, 41161, 41177, 41179, 41183, 41189, 41201, 41203, 41213, 41221, 41227, 41231, 41233, 41243, 41257, 41263, 41269, 41281, 41299, 41333, 41341, 41351, 41357, 41381, 41387, 41389, 41399, 41411, 41413, 41443, 41453, 41467, 41479, 41491, 41507, 41513, 41519, 41521, 41539, 41543, 41549, 41579, 41593, 41597, 41603, 41609, 41611, 41617, 41621, 41627, 41641, 41647, 41651, 41659, 41669, 41681, 41687, 41719, 41729, 41737, 41759, 41761, 41771, 41777, 41801, 41809, 41813, 41843, 41849, 41851, 41863, 41879, 41887, 41893, 41897, 41903, 41911, 41927, 41941, 41947, 41953, 41957, 41959, 41969, 41981, 41983], "solution": 2267, "source_dataset": "count_primes", "source_index": 60, "start": 18553}
Your task is to sort words in ascending or descending order using ASCII/Unicode ordering. Your output should be a comma-separated list of words, e.g. word_1, word_2, word_3 Now, sort these words in ascending order (using ASCII/Unicode ordering) and return them as a comma-separated list: astonish, gutenberg, early, before, cholera, means, especially, American, granted, newspaper, dresser, gathered, occupant, located, according, identify, notifies, notice, editors, ACTUAL, recount, DAMAGES, sixty, statements, additions, lover, expend
ACTUAL, American, DAMAGES, according, additions, astonish, before, cholera, dresser, early, editors, especially, expend, gathered, granted, gutenberg, identify, located, lover, means, newspaper, notice, notifies, occupant, recount, sixty, statements
word_sorting
{"difficulty": {"num_words": [25, 50], "word_length": [5, 10]}, "direction": "ascending", "num_words": 27, "original_words": ["astonish", "gutenberg", "early", "before", "cholera", "means", "especially", "American", "granted", "newspaper", "dresser", "gathered", "occupant", "located", "according", "identify", "notifies", "notice", "editors", "ACTUAL", "recount", "DAMAGES", "sixty", "statements", "additions", "lover", "expend"], "sorted_words": ["ACTUAL", "American", "DAMAGES", "according", "additions", "astonish", "before", "cholera", "dresser", "early", "editors", "especially", "expend", "gathered", "granted", "gutenberg", "identify", "located", "lover", "means", "newspaper", "notice", "notifies", "occupant", "recount", "sixty", "statements"], "source_dataset": "word_sorting", "source_index": 61, "transformed_words": ["astonish", "gutenberg", "early", "before", "cholera", "means", "especially", "American", "granted", "newspaper", "dresser", "gathered", "occupant", "located", "according", "identify", "notifies", "notice", "editors", "ACTUAL", "recount", "DAMAGES", "sixty", "statements", "additions", "lover", "expend"], "word_length": 10}
Solve the following problem. Provide you answer as a comma-separated list of words with a space after the comma. Reverse this list of words: man, Gutenberg, the, I, the, ANY, Certainly, in, performing, West, and, to, confirmation, including, the, works, freely, without, involve, almost, Singularly, all, LIMITED, editions, of, done, with
with, done, of, editions, LIMITED, all, Singularly, almost, involve, without, freely, works, the, including, confirmation, to, and, West, performing, in, Certainly, ANY, the, I, the, Gutenberg, man
word_sequence_reversal
{"difficulty": {"words": [25, 50]}, "num_words": 27, "source_dataset": "word_sequence_reversal", "source_index": 62, "words": ["man", "Gutenberg", "the", "I", "the", "ANY", "Certainly", "in", "performing", "West", "and", "to", "confirmation", "including", "the", "works", "freely", "without", "involve", "almost", "Singularly", "all", "LIMITED", "editions", "of", "done", "with"]}
There is a dismantling engineer who has old machines A, B, and C. He discovered that he can obtain a batch of new parts X, Y, Z through the following rules: 1. One unit of machine A can be dismanteled into two units of part X and one unit of part Y. 2. Two units of machine B can be dismanteled into one unit of part X. 3. Two units of machine C can be dismanteled into one unit of part Y. 4. One unit of machine B and one unit of machine C can be combined into one unit of machine A. 5. One unit of part X and one unit of part Y can be combined into one unit of part Z. Given a certain number of initial machines, your job is to continuously cycle through the rules 1-5 above, exausting one rule at a time, until no more rules can be applied, or until a state (counts of each machine and part type) is repeated. After you make use of a rule, you should update the counts of each machine and part type accordingly, and then restart the process from rule 1. The output should be the count of each machine and part type after the rules have been exhaustively applied in the following order: A B C X Y Z. For example 1 0 1 5 4 3 means that you have 1 machine A, 0 machine B, 1 machine C, 5 part X, 4 part Y, and 3 part Z. Now, you have 92 machine A, 73 machine B, and 90 machine C. Provide the count of each machine and part type after applying the above rules. Note: Apply the rules at most 1000 times. If the rules cannot be applied anymore, or if you have reached the maximum number of iterations, stop and provide the current counts of each machine and part type.
0 1 0 83 0 137
string_splitting
{"difficulty": {"initial_machines": [50, 100]}, "initial_machines": [92, 73, 90], "solution": [0, 1, 0, 83, 0, 137], "source_dataset": "string_splitting", "source_index": 63, "states": [[92, 73, 90, 0, 0, 0], [91, 73, 90, 2, 1, 0], [90, 73, 90, 4, 2, 0], [89, 73, 90, 6, 3, 0], [88, 73, 90, 8, 4, 0], [87, 73, 90, 10, 5, 0], [86, 73, 90, 12, 6, 0], [85, 73, 90, 14, 7, 0], [84, 73, 90, 16, 8, 0], [83, 73, 90, 18, 9, 0], [82, 73, 90, 20, 10, 0], [81, 73, 90, 22, 11, 0], [80, 73, 90, 24, 12, 0], [79, 73, 90, 26, 13, 0], [78, 73, 90, 28, 14, 0], [77, 73, 90, 30, 15, 0], [76, 73, 90, 32, 16, 0], [75, 73, 90, 34, 17, 0], [74, 73, 90, 36, 18, 0], [73, 73, 90, 38, 19, 0], [72, 73, 90, 40, 20, 0], [71, 73, 90, 42, 21, 0], [70, 73, 90, 44, 22, 0], [69, 73, 90, 46, 23, 0], [68, 73, 90, 48, 24, 0], [67, 73, 90, 50, 25, 0], [66, 73, 90, 52, 26, 0], [65, 73, 90, 54, 27, 0], [64, 73, 90, 56, 28, 0], [63, 73, 90, 58, 29, 0], [62, 73, 90, 60, 30, 0], [61, 73, 90, 62, 31, 0], [60, 73, 90, 64, 32, 0], [59, 73, 90, 66, 33, 0], [58, 73, 90, 68, 34, 0], [57, 73, 90, 70, 35, 0], [56, 73, 90, 72, 36, 0], [55, 73, 90, 74, 37, 0], [54, 73, 90, 76, 38, 0], [53, 73, 90, 78, 39, 0], [52, 73, 90, 80, 40, 0], [51, 73, 90, 82, 41, 0], [50, 73, 90, 84, 42, 0], [49, 73, 90, 86, 43, 0], [48, 73, 90, 88, 44, 0], [47, 73, 90, 90, 45, 0], [46, 73, 90, 92, 46, 0], [45, 73, 90, 94, 47, 0], [44, 73, 90, 96, 48, 0], [43, 73, 90, 98, 49, 0], [42, 73, 90, 100, 50, 0], [41, 73, 90, 102, 51, 0], [40, 73, 90, 104, 52, 0], [39, 73, 90, 106, 53, 0], [38, 73, 90, 108, 54, 0], [37, 73, 90, 110, 55, 0], [36, 73, 90, 112, 56, 0], [35, 73, 90, 114, 57, 0], [34, 73, 90, 116, 58, 0], [33, 73, 90, 118, 59, 0], [32, 73, 90, 120, 60, 0], [31, 73, 90, 122, 61, 0], [30, 73, 90, 124, 62, 0], [29, 73, 90, 126, 63, 0], [28, 73, 90, 128, 64, 0], [27, 73, 90, 130, 65, 0], [26, 73, 90, 132, 66, 0], [25, 73, 90, 134, 67, 0], [24, 73, 90, 136, 68, 0], [23, 73, 90, 138, 69, 0], [22, 73, 90, 140, 70, 0], [21, 73, 90, 142, 71, 0], [20, 73, 90, 144, 72, 0], [19, 73, 90, 146, 73, 0], [18, 73, 90, 148, 74, 0], [17, 73, 90, 150, 75, 0], [16, 73, 90, 152, 76, 0], [15, 73, 90, 154, 77, 0], [14, 73, 90, 156, 78, 0], [13, 73, 90, 158, 79, 0], [12, 73, 90, 160, 80, 0], [11, 73, 90, 162, 81, 0], [10, 73, 90, 164, 82, 0], [9, 73, 90, 166, 83, 0], [8, 73, 90, 168, 84, 0], [7, 73, 90, 170, 85, 0], [6, 73, 90, 172, 86, 0], [5, 73, 90, 174, 87, 0], [4, 73, 90, 176, 88, 0], [3, 73, 90, 178, 89, 0], [2, 73, 90, 180, 90, 0], [1, 73, 90, 182, 91, 0], [0, 73, 90, 184, 92, 0], [0, 71, 90, 185, 92, 0], [0, 69, 90, 186, 92, 0], [0, 67, 90, 187, 92, 0], [0, 65, 90, 188, 92, 0], [0, 63, 90, 189, 92, 0], [0, 61, 90, 190, 92, 0], [0, 59, 90, 191, 92, 0], [0, 57, 90, 192, 92, 0], [0, 55, 90, 193, 92, 0], [0, 53, 90, 194, 92, 0], [0, 51, 90, 195, 92, 0], [0, 49, 90, 196, 92, 0], [0, 47, 90, 197, 92, 0], [0, 45, 90, 198, 92, 0], [0, 43, 90, 199, 92, 0], [0, 41, 90, 200, 92, 0], [0, 39, 90, 201, 92, 0], [0, 37, 90, 202, 92, 0], [0, 35, 90, 203, 92, 0], [0, 33, 90, 204, 92, 0], [0, 31, 90, 205, 92, 0], [0, 29, 90, 206, 92, 0], [0, 27, 90, 207, 92, 0], [0, 25, 90, 208, 92, 0], [0, 23, 90, 209, 92, 0], [0, 21, 90, 210, 92, 0], [0, 19, 90, 211, 92, 0], [0, 17, 90, 212, 92, 0], [0, 15, 90, 213, 92, 0], [0, 13, 90, 214, 92, 0], [0, 11, 90, 215, 92, 0], [0, 9, 90, 216, 92, 0], [0, 7, 90, 217, 92, 0], [0, 5, 90, 218, 92, 0], [0, 3, 90, 219, 92, 0], [0, 1, 90, 220, 92, 0], [0, 1, 88, 220, 93, 0], [0, 1, 86, 220, 94, 0], [0, 1, 84, 220, 95, 0], [0, 1, 82, 220, 96, 0], [0, 1, 80, 220, 97, 0], [0, 1, 78, 220, 98, 0], [0, 1, 76, 220, 99, 0], [0, 1, 74, 220, 100, 0], [0, 1, 72, 220, 101, 0], [0, 1, 70, 220, 102, 0], [0, 1, 68, 220, 103, 0], [0, 1, 66, 220, 104, 0], [0, 1, 64, 220, 105, 0], [0, 1, 62, 220, 106, 0], [0, 1, 60, 220, 107, 0], [0, 1, 58, 220, 108, 0], [0, 1, 56, 220, 109, 0], [0, 1, 54, 220, 110, 0], [0, 1, 52, 220, 111, 0], [0, 1, 50, 220, 112, 0], [0, 1, 48, 220, 113, 0], [0, 1, 46, 220, 114, 0], [0, 1, 44, 220, 115, 0], [0, 1, 42, 220, 116, 0], [0, 1, 40, 220, 117, 0], [0, 1, 38, 220, 118, 0], [0, 1, 36, 220, 119, 0], [0, 1, 34, 220, 120, 0], [0, 1, 32, 220, 121, 0], [0, 1, 30, 220, 122, 0], [0, 1, 28, 220, 123, 0], [0, 1, 26, 220, 124, 0], [0, 1, 24, 220, 125, 0], [0, 1, 22, 220, 126, 0], [0, 1, 20, 220, 127, 0], [0, 1, 18, 220, 128, 0], [0, 1, 16, 220, 129, 0], [0, 1, 14, 220, 130, 0], [0, 1, 12, 220, 131, 0], [0, 1, 10, 220, 132, 0], [0, 1, 8, 220, 133, 0], [0, 1, 6, 220, 134, 0], [0, 1, 4, 220, 135, 0], [0, 1, 2, 220, 136, 0], [0, 1, 0, 220, 137, 0], [0, 1, 0, 219, 136, 1], [0, 1, 0, 218, 135, 2], [0, 1, 0, 217, 134, 3], [0, 1, 0, 216, 133, 4], [0, 1, 0, 215, 132, 5], [0, 1, 0, 214, 131, 6], [0, 1, 0, 213, 130, 7], [0, 1, 0, 212, 129, 8], [0, 1, 0, 211, 128, 9], [0, 1, 0, 210, 127, 10], [0, 1, 0, 209, 126, 11], [0, 1, 0, 208, 125, 12], [0, 1, 0, 207, 124, 13], [0, 1, 0, 206, 123, 14], [0, 1, 0, 205, 122, 15], [0, 1, 0, 204, 121, 16], [0, 1, 0, 203, 120, 17], [0, 1, 0, 202, 119, 18], [0, 1, 0, 201, 118, 19], [0, 1, 0, 200, 117, 20], [0, 1, 0, 199, 116, 21], [0, 1, 0, 198, 115, 22], [0, 1, 0, 197, 114, 23], [0, 1, 0, 196, 113, 24], [0, 1, 0, 195, 112, 25], [0, 1, 0, 194, 111, 26], [0, 1, 0, 193, 110, 27], [0, 1, 0, 192, 109, 28], [0, 1, 0, 191, 108, 29], [0, 1, 0, 190, 107, 30], [0, 1, 0, 189, 106, 31], [0, 1, 0, 188, 105, 32], [0, 1, 0, 187, 104, 33], [0, 1, 0, 186, 103, 34], [0, 1, 0, 185, 102, 35], [0, 1, 0, 184, 101, 36], [0, 1, 0, 183, 100, 37], [0, 1, 0, 182, 99, 38], [0, 1, 0, 181, 98, 39], [0, 1, 0, 180, 97, 40], [0, 1, 0, 179, 96, 41], [0, 1, 0, 178, 95, 42], [0, 1, 0, 177, 94, 43], [0, 1, 0, 176, 93, 44], [0, 1, 0, 175, 92, 45], [0, 1, 0, 174, 91, 46], [0, 1, 0, 173, 90, 47], [0, 1, 0, 172, 89, 48], [0, 1, 0, 171, 88, 49], [0, 1, 0, 170, 87, 50], [0, 1, 0, 169, 86, 51], [0, 1, 0, 168, 85, 52], [0, 1, 0, 167, 84, 53], [0, 1, 0, 166, 83, 54], [0, 1, 0, 165, 82, 55], [0, 1, 0, 164, 81, 56], [0, 1, 0, 163, 80, 57], [0, 1, 0, 162, 79, 58], [0, 1, 0, 161, 78, 59], [0, 1, 0, 160, 77, 60], [0, 1, 0, 159, 76, 61], [0, 1, 0, 158, 75, 62], [0, 1, 0, 157, 74, 63], [0, 1, 0, 156, 73, 64], [0, 1, 0, 155, 72, 65], [0, 1, 0, 154, 71, 66], [0, 1, 0, 153, 70, 67], [0, 1, 0, 152, 69, 68], [0, 1, 0, 151, 68, 69], [0, 1, 0, 150, 67, 70], [0, 1, 0, 149, 66, 71], [0, 1, 0, 148, 65, 72], [0, 1, 0, 147, 64, 73], [0, 1, 0, 146, 63, 74], [0, 1, 0, 145, 62, 75], [0, 1, 0, 144, 61, 76], [0, 1, 0, 143, 60, 77], [0, 1, 0, 142, 59, 78], [0, 1, 0, 141, 58, 79], [0, 1, 0, 140, 57, 80], [0, 1, 0, 139, 56, 81], [0, 1, 0, 138, 55, 82], [0, 1, 0, 137, 54, 83], [0, 1, 0, 136, 53, 84], [0, 1, 0, 135, 52, 85], [0, 1, 0, 134, 51, 86], [0, 1, 0, 133, 50, 87], [0, 1, 0, 132, 49, 88], [0, 1, 0, 131, 48, 89], [0, 1, 0, 130, 47, 90], [0, 1, 0, 129, 46, 91], [0, 1, 0, 128, 45, 92], [0, 1, 0, 127, 44, 93], [0, 1, 0, 126, 43, 94], [0, 1, 0, 125, 42, 95], [0, 1, 0, 124, 41, 96], [0, 1, 0, 123, 40, 97], [0, 1, 0, 122, 39, 98], [0, 1, 0, 121, 38, 99], [0, 1, 0, 120, 37, 100], [0, 1, 0, 119, 36, 101], [0, 1, 0, 118, 35, 102], [0, 1, 0, 117, 34, 103], [0, 1, 0, 116, 33, 104], [0, 1, 0, 115, 32, 105], [0, 1, 0, 114, 31, 106], [0, 1, 0, 113, 30, 107], [0, 1, 0, 112, 29, 108], [0, 1, 0, 111, 28, 109], [0, 1, 0, 110, 27, 110], [0, 1, 0, 109, 26, 111], [0, 1, 0, 108, 25, 112], [0, 1, 0, 107, 24, 113], [0, 1, 0, 106, 23, 114], [0, 1, 0, 105, 22, 115], [0, 1, 0, 104, 21, 116], [0, 1, 0, 103, 20, 117], [0, 1, 0, 102, 19, 118], [0, 1, 0, 101, 18, 119], [0, 1, 0, 100, 17, 120], [0, 1, 0, 99, 16, 121], [0, 1, 0, 98, 15, 122], [0, 1, 0, 97, 14, 123], [0, 1, 0, 96, 13, 124], [0, 1, 0, 95, 12, 125], [0, 1, 0, 94, 11, 126], [0, 1, 0, 93, 10, 127], [0, 1, 0, 92, 9, 128], [0, 1, 0, 91, 8, 129], [0, 1, 0, 90, 7, 130], [0, 1, 0, 89, 6, 131], [0, 1, 0, 88, 5, 132], [0, 1, 0, 87, 4, 133], [0, 1, 0, 86, 3, 134], [0, 1, 0, 85, 2, 135], [0, 1, 0, 84, 1, 136], [0, 1, 0, 83, 0, 137]]}
Restore the correct order of words in the following sentence: paying Gutenberg royalties registered charge terms used eBook, of use Gutenberg is of for not trademark. and an for except may Project including following by if a trademark you Project be license, trademark, the the the
Project Project Gutenberg Gutenberg is a registered trademark, and may not be used if you charge for for an eBook, except by following the the the terms of of trademark license, including paying royalties use trademark.
sentence_reordering
{"difficulty": {"words_in_sentence": [20, 50]}, "source_dataset": "sentence_reordering", "source_index": 64, "word_count": 36}
This is a 'Game of Life' grid. We consider a game halted if there are no cells alive. Will this game halt at or before 50 steps? Assume a Moore neighborhood and wrapping topology. If it will halt, reply 'True'. If it won't halt, reply 'False'. Initial board: [[0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] ... [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0]]
True
game_of_life_halting
{"difficulty": {"difficulty": 2, "grid_size_x": 50, "grid_size_y": 50, "max_simulation_steps": 50, "num_oscillators": 7}, "grid_size_x": 50, "grid_size_y": 50, "placed_patterns": [{"name": "non-oscillator", "position": [42, 8]}, {"name": "non-oscillator", "position": [9, 31]}, {"name": "non-oscillator", "position": [16, 18]}, {"name": "non-oscillator", "position": [38, 28]}, {"name": "non-oscillator", "position": [29, 5]}, {"name": "non-oscillator", "position": [34, 21]}, {"name": "non-oscillator", "position": [4, 36]}], "should_oscillate": false, "simulation_steps": 50, "source_dataset": "game_of_life_halting", "source_index": 65}
Decrypt this Caesar cipher text: RTBG VZR SGD BNTQRD NE ENQ HS VZR MNS SHKK SGD XDZQ SGZS SGD EZLNTR NRVZKC MHDQ LZCD SGHR FQDZS CHRBNUDQX. Provide only the decrypted text as your final answer.
SUCH WAS THE COURSE OF FOR IT WAS NOT TILL THE YEAR THAT THE FAMOUS OSWALD NIER MADE THIS GREAT DISCOVERY
caesar_cipher
{"cipher_text": "RTBG VZR SGD BNTQRD NE ENQ HS VZR MNS SHKK SGD XDZQ SGZS SGD EZLNTR NRVZKC MHDQ LZCD SGHR FQDZS CHRBNUDQX", "clear_text": "SUCH WAS THE COURSE OF FOR IT WAS NOT TILL THE YEAR THAT THE FAMOUS OSWALD NIER MADE THIS GREAT DISCOVERY", "difficulty": {"rotation": [15, 25], "words": [15, 25]}, "num_words": 21, "rotation": 25, "source_dataset": "caesar_cipher", "source_index": 66}
Please provide a coloring for this graph such that every vertex is not connected to a vertex of the same color. The graph has these properties: Vertices: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] Edges: [(0, 7), (1, 10), (2, 12), (4, 9), (4, 12), (7, 12), (8, 10), (8, 12)] Possible colors: [1, 2, 3, 4] Return your solution as a JSON map of vertices to colors. (For example: {"0": 1, "1": 2, "2": 3}.)
null
graph_color
{"difficulty": {"num_colors": 4, "num_vertices": [10, 20]}, "num_vertices": 14, "possible_answer": {"0": 1, "1": 1, "2": 1, "3": 1, "4": 1, "5": 1, "6": 1, "7": 2, "8": 1, "9": 2, "10": 2, "11": 1, "12": 3, "13": 1}, "puzzle": {"color_options": [1, 2, 3, 4], "edges": [[0, 7], [1, 10], [2, 12], [4, 9], [4, 12], [7, 12], [8, 10], [8, 12]], "num_colors": 4, "vertices": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]}, "source_dataset": "graph_color", "source_index": 67}
Transform the word ladder 'WRITE' to 'SENSE' by changing one letter at a time. Provide your answer as a comma-separated sequence of uppercase letters without spaces. Each step must be a valid English word.
WRITE,WHITE,WHILE,WHOLE,WHOSE,CHOSE,CHASE,CEASE,TEASE,TENSE,SENSE
word_ladder
{"chain_length": 11, "difficulty": {"word_length": [3, 5]}, "end_word": "SENSE", "source_dataset": "word_ladder", "source_index": 68, "start_word": "WRITE", "word_length": 5}
Your job is to repeatedly transform a string according to a set of rules until no further transformations can be performed, or a state is repeated. Evaluate the following rules in order, and apply the first applicable rule to the string: 1. If the string ends with 'ba', replace it with 'ab'. 2. If the string prefix is 'cb', replace it with 'aa' and delete the last character. 3. If the string ends with 'aa', replace it with 'cc'. Once you have applied a rule, repeat the process with the new string until no further transformations can be performed (i.e. the string doesn't change), or a state is repeated. If a state is repeated, the process is terminated, and the repeated state is discarded (i.e. is not considered as the final answer) and the state before the repeated state is considered as the final answer. Your output should be the final transformed string after applying all the rules. Transform the following string according to the above list of rules: aabaccaccaacacbcbbaaacacbcbbaccbbabacbccaaacbccacccbcabacaccbabbcaaabcbbbccbcbcbccbbcbcbbbabcbbacab
aabaccaccaacacbcbbaaacacbcbbaccbbabacbccaaacbccacccbcabacaccbabbcaaabcbbbccbcbcbccbbcbcbbbabcbbacab
string_manipulation
{"difficulty": {"num_rules": [3, 8], "string_length": [50, 100]}, "num_rules": 3, "selected_rules": ["If the string ends with 'ba', replace it with 'ab'.", "If the string prefix is 'cb', replace it with 'aa' and delete the last character.", "If the string ends with 'aa', replace it with 'cc'."], "solution": "aabaccaccaacacbcbbaaacacbcbbaccbbabacbccaaacbccacccbcabacaccbabbcaaabcbbbccbcbcbccbbcbcbbbabcbbacab", "source_dataset": "string_manipulation", "source_index": 69, "states": ["aabaccaccaacacbcbbaaacacbcbbaccbbabacbccaaacbccacccbcabacaccbabbcaaabcbbbccbcbcbccbbcbcbbbabcbbacab"], "string": "aabaccaccaacacbcbbaaacacbcbbaccbbabacbccaaacbccacccbcabacaccbabbcaaabcbbbccbcbcbccbbcbcbbbabcbbacab", "string_length": 99}
Keep all numbers smaller than -189.216 in this list: ['368.0287', '-228.2027', '455.1163', '-275.30', '-388.1280', '-346.8430', '287.5424', '-267.95', '-18.5464', '294.64', '458.375', '-422.737', '248.99', '499.389', '-457.7508', '-324.99', '-258.77', '-247.364', '-173.12', '-186.8243', '119.87', '223.3877', '-354.30', '4.26', '133.5975', '99.550', '393.066', '104.601', '-173.083', '-350.2843', '20.906', '378.27', '-491.85', '-288.79', '41.17', '169.095', '-341.51', '-498.09', '-136.76', '-488.0796', '9.8012', '-206.0674', '-239.944', '302.238', '-189.67', '2.690', '-478.387', '-111.4285', '188.20', '236.919', '286.021', '-382.936', '157.18', '274.276', '-387.787', '369.984', '-232.0608', '-426.05', '216.7232', '41.241', '192.3849', '-165.4868', '50.444', '90.75', '153.11', '-137.476', '431.1352', '50.4093', '35.37', '155.1866', '-493.9373', '-93.16', '-474.03', '494.49', '-112.194', '-464.346', '276.6484', '-65.291', '485.47', '-167.0694', '376.01', '85.3856', '-489.56', '-171.241', '-397.457', '-206.20', '-423.39'] Return the new list in the same format.
['-228.2027', '-275.30', '-388.1280', '-346.8430', '-267.95', '-422.737', '-457.7508', '-324.99', '-258.77', '-247.364', '-354.30', '-350.2843', '-491.85', '-288.79', '-341.51', '-498.09', '-488.0796', '-206.0674', '-239.944', '-189.67', '-478.387', '-382.936', '-387.787', '-232.0608', '-426.05', '-493.9373', '-474.03', '-464.346', '-489.56', '-397.457', '-206.20', '-423.39']
number_filtering
{"difficulty": {"decimals": [2, 4], "numbers": [50, 100], "value": [-500, 500]}, "filter_value": "-189.216", "numbers": 87, "operation": "keep_smaller", "original_numbers": ["368.0287", "-228.2027", "455.1163", "-275.30", "-388.1280", "-346.8430", "287.5424", "-267.95", "-18.5464", "294.64", "458.375", "-422.737", "248.99", "499.389", "-457.7508", "-324.99", "-258.77", "-247.364", "-173.12", "-186.8243", "119.87", "223.3877", "-354.30", "4.26", "133.5975", "99.550", "393.066", "104.601", "-173.083", "-350.2843", "20.906", "378.27", "-491.85", "-288.79", "41.17", "169.095", "-341.51", "-498.09", "-136.76", "-488.0796", "9.8012", "-206.0674", "-239.944", "302.238", "-189.67", "2.690", "-478.387", "-111.4285", "188.20", "236.919", "286.021", "-382.936", "157.18", "274.276", "-387.787", "369.984", "-232.0608", "-426.05", "216.7232", "41.241", "192.3849", "-165.4868", "50.444", "90.75", "153.11", "-137.476", "431.1352", "50.4093", "35.37", "155.1866", "-493.9373", "-93.16", "-474.03", "494.49", "-112.194", "-464.346", "276.6484", "-65.291", "485.47", "-167.0694", "376.01", "85.3856", "-489.56", "-171.241", "-397.457", "-206.20", "-423.39"], "result": ["-228.2027", "-275.30", "-388.1280", "-346.8430", "-267.95", "-422.737", "-457.7508", "-324.99", "-258.77", "-247.364", "-354.30", "-350.2843", "-491.85", "-288.79", "-341.51", "-498.09", "-488.0796", "-206.0674", "-239.944", "-189.67", "-478.387", "-382.936", "-387.787", "-232.0608", "-426.05", "-493.9373", "-474.03", "-464.346", "-489.56", "-397.457", "-206.20", "-423.39"], "source_dataset": "number_filtering", "source_index": 70}
Your task is to convert a number between two different bases. If the target base is > 10, use lowercase letters a-z for digits above 9. Now, convert the base-12 number 23331 to base-10
47125
base_conversion
{"decimal_value": 47125, "difficulty": {"base": [9, 18], "value": [10000, 100000]}, "source_base": 12, "source_dataset": "base_conversion", "source_index": 71, "source_repr": "23331", "target_base": 10, "target_repr": "47125"}
This is a 'Game of Life' grid. We consider a game halted if there are no cells alive. Will this game halt at or before 50 steps? Assume a Moore neighborhood and wrapping topology. If it will halt, reply 'True'. If it won't halt, reply 'False'. Initial board: [[0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] ... [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0]]
False
game_of_life_halting
{"difficulty": {"difficulty": 2, "grid_size_x": 50, "grid_size_y": 50, "max_simulation_steps": 50, "num_oscillators": 7}, "grid_size_x": 50, "grid_size_y": 50, "placed_patterns": [{"name": "mold", "position": [6, 27]}, {"name": "mold", "position": [7, 3]}, {"name": "mold", "position": [35, 36]}, {"name": "mold", "position": [22, 4]}, {"name": "caterer", "position": [36, 22]}, {"name": "pinwheel", "position": [21, 29]}, {"name": "caterer", "position": [2, 19]}], "should_oscillate": true, "simulation_steps": 50, "source_dataset": "game_of_life_halting", "source_index": 72}
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
58