PaddleOCR Mobile Quantized Models (ONNX)
Overview
This repo hosts four ONNX models converted from PaddleOCR mobile checkpoints
| File | Task | Language scope | Input shape |
|---|---|---|---|
Multilingual_PP-OCRv3_det_infer.onnx |
Text-detection | 80+ scripts | NCHW • 1×3×H×W |
PP-OCRv3_mobile_det_infer.onnx |
Text-detection | Latin only | 1×3×H×W |
ch_ppocr_mobile_v2.0_cls_infer.onnx |
Angle classifier | Chinese/Latin | 1×3×H×W |
latin_PP-OCRv3_mobile_rec_infer.onnx |
Text-recognition | Latin | 1×3×H×W |
All models were:
- exported with paddle2onnx 1.2.3 (
opset 11) - simplified via onnx-simplifier 0.4+
Quick Start
import onnxruntime as ort, numpy as np
img = np.random.rand(1, 3, 224, 224).astype("float32")
det = ort.InferenceSession("Multilingual_PP-OCRv3_det_infer.onnx")
cls = ort.InferenceSession("ch_ppocr_mobile_v2.0_cls_infer.onnx")
rec = ort.InferenceSession("latin_PP-OCRv3_mobile_rec_infer.onnx")
det_out = det.run(None, {det.get_inputs()[0].name: img})[0]
# add your post-processing / cropping / decoding here …
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support