wav2vec2-base-south-vi
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on the nguyendv02/ViMD_Dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.4597
- Wer: 0.1508
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.5972 | 0.2904 | 40 | 0.3858 | 0.2555 |
| 0.5855 | 0.5808 | 80 | 0.3731 | 0.2320 |
| 0.5794 | 0.8711 | 120 | 0.3773 | 0.2486 |
| 0.5258 | 1.1597 | 160 | 0.3873 | 0.2285 |
| 0.5457 | 1.4501 | 200 | 0.3683 | 0.2390 |
| 0.5357 | 1.7405 | 240 | 0.3676 | 0.2177 |
| 0.5553 | 2.0290 | 280 | 0.3738 | 0.2103 |
| 0.5103 | 2.3194 | 320 | 0.3647 | 0.2192 |
| 0.4871 | 2.6098 | 360 | 0.3617 | 0.2079 |
| 0.4967 | 2.9002 | 400 | 0.3757 | 0.2027 |
| 0.4824 | 3.1887 | 440 | 0.3728 | 0.2021 |
| 0.4672 | 3.4791 | 480 | 0.3635 | 0.2018 |
| 0.4534 | 3.7695 | 520 | 0.3759 | 0.2097 |
| 0.4644 | 4.0581 | 560 | 0.3774 | 0.2034 |
| 0.4283 | 4.3485 | 600 | 0.3630 | 0.1995 |
| 0.4805 | 4.6388 | 640 | 0.3600 | 0.2119 |
| 0.5023 | 4.9292 | 680 | 0.3686 | 0.2030 |
| 0.458 | 5.2178 | 720 | 0.3602 | 0.2012 |
| 0.4178 | 5.5082 | 760 | 0.3652 | 0.1974 |
| 0.4486 | 5.7985 | 800 | 0.3586 | 0.2020 |
| 0.4372 | 6.0871 | 840 | 0.3731 | 0.1949 |
| 0.3922 | 6.3775 | 880 | 0.3585 | 0.2059 |
| 0.4104 | 6.6679 | 920 | 0.3702 | 0.1938 |
| 0.4181 | 6.9583 | 960 | 0.3629 | 0.2145 |
| 0.4151 | 7.2468 | 1000 | 0.3524 | 0.2040 |
| 0.3979 | 7.5372 | 1040 | 0.3654 | 0.1931 |
| 0.4226 | 7.8276 | 1080 | 0.3751 | 0.1958 |
| 0.4023 | 8.1162 | 1120 | 0.3784 | 0.1931 |
| 0.3579 | 8.4065 | 1160 | 0.3651 | 0.1972 |
| 0.4064 | 8.6969 | 1200 | 0.3659 | 0.1892 |
| 0.3761 | 8.9873 | 1240 | 0.3568 | 0.1998 |
| 0.3681 | 9.2759 | 1280 | 0.3794 | 0.1931 |
| 0.4058 | 9.5662 | 1320 | 0.3631 | 0.2043 |
| 0.3652 | 9.8566 | 1360 | 0.3857 | 0.1930 |
| 0.3703 | 10.1452 | 1400 | 0.3619 | 0.1906 |
| 0.3547 | 10.4356 | 1440 | 0.3786 | 0.1865 |
| 0.3318 | 10.7260 | 1480 | 0.3735 | 0.1932 |
| 0.3697 | 11.0145 | 1520 | 0.3729 | 0.1867 |
| 0.3335 | 11.3049 | 1560 | 0.3808 | 0.2007 |
| 0.3283 | 11.5953 | 1600 | 0.3778 | 0.1914 |
| 0.3597 | 11.8857 | 1640 | 0.3568 | 0.1834 |
| 0.3389 | 12.1742 | 1680 | 0.3785 | 0.1939 |
| 0.3646 | 12.4646 | 1720 | 0.3874 | 0.1858 |
| 0.3327 | 12.7550 | 1760 | 0.3683 | 0.1796 |
| 0.3361 | 13.0436 | 1800 | 0.4073 | 0.1822 |
| 0.3122 | 13.3339 | 1840 | 0.3738 | 0.1935 |
| 0.3567 | 13.6243 | 1880 | 0.3781 | 0.1883 |
| 0.3303 | 13.9147 | 1920 | 0.3650 | 0.1833 |
| 0.2981 | 14.2033 | 1960 | 0.4006 | 0.1875 |
| 0.33 | 14.4936 | 2000 | 0.3897 | 0.1783 |
| 0.3304 | 14.7840 | 2040 | 0.3912 | 0.1888 |
| 0.3115 | 15.0726 | 2080 | 0.3893 | 0.1842 |
| 0.3034 | 15.3630 | 2120 | 0.3928 | 0.1813 |
| 0.3086 | 15.6534 | 2160 | 0.3865 | 0.1910 |
| 0.2989 | 15.9437 | 2200 | 0.3851 | 0.1849 |
| 0.3062 | 16.2323 | 2240 | 0.3954 | 0.1890 |
| 0.3184 | 16.5227 | 2280 | 0.4297 | 0.1940 |
| 0.2858 | 16.8131 | 2320 | 0.4038 | 0.1931 |
| 0.2743 | 17.1016 | 2360 | 0.4075 | 0.1928 |
| 0.2942 | 17.3920 | 2400 | 0.4086 | 0.1754 |
| 0.3157 | 17.6824 | 2440 | 0.4407 | 0.1842 |
| 0.3133 | 17.9728 | 2480 | 0.3748 | 0.1871 |
| 0.2886 | 18.2613 | 2520 | 0.3930 | 0.1841 |
| 0.2893 | 18.5517 | 2560 | 0.4553 | 0.1759 |
| 0.2983 | 18.8421 | 2600 | 0.3963 | 0.1879 |
| 0.3446 | 19.1307 | 2640 | 0.4410 | 0.1865 |
| 0.3051 | 19.4211 | 2680 | 0.4221 | 0.1799 |
| 0.2856 | 19.7114 | 2720 | 0.3885 | 0.1833 |
| 0.2543 | 20.0 | 2760 | 0.4098 | 0.1755 |
| 0.2681 | 20.2904 | 2800 | 0.4069 | 0.1853 |
| 0.2616 | 20.5808 | 2840 | 0.4463 | 0.1754 |
| 0.2711 | 20.8711 | 2880 | 0.4335 | 0.1814 |
| 0.2769 | 21.1597 | 2920 | 0.4399 | 0.1790 |
| 0.2534 | 21.4501 | 2960 | 0.4296 | 0.1791 |
| 0.2564 | 21.7405 | 3000 | 0.4227 | 0.1829 |
| 0.2739 | 22.0290 | 3040 | 0.4192 | 0.1762 |
| 0.2602 | 22.3194 | 3080 | 0.4455 | 0.1738 |
| 0.2681 | 22.6098 | 3120 | 0.4371 | 0.1762 |
| 0.2676 | 22.9002 | 3160 | 0.4045 | 0.1838 |
| 0.2586 | 23.1887 | 3200 | 0.4440 | 0.1743 |
| 0.2628 | 23.4791 | 3240 | 0.4478 | 0.1803 |
| 0.2449 | 23.7695 | 3280 | 0.4349 | 0.1779 |
| 0.26 | 24.0581 | 3320 | 0.4492 | 0.1806 |
| 0.2373 | 24.3485 | 3360 | 0.4326 | 0.1745 |
| 0.2282 | 24.6388 | 3400 | 0.4333 | 0.1765 |
| 0.2481 | 24.9292 | 3440 | 0.4502 | 0.1716 |
| 0.2335 | 25.2178 | 3480 | 0.4408 | 0.1742 |
| 0.2539 | 25.5082 | 3520 | 0.4412 | 0.1710 |
| 0.2173 | 25.7985 | 3560 | 0.4354 | 0.1751 |
| 0.224 | 26.0871 | 3600 | 0.4763 | 0.1714 |
| 0.2474 | 26.3775 | 3640 | 0.4820 | 0.1685 |
| 0.2213 | 26.6679 | 3680 | 0.4503 | 0.1718 |
| 0.2307 | 26.9583 | 3720 | 0.4781 | 0.1708 |
| 0.2235 | 27.2468 | 3760 | 0.4838 | 0.1697 |
| 0.2352 | 27.5372 | 3800 | 0.4568 | 0.1741 |
| 0.2296 | 27.8276 | 3840 | 0.4565 | 0.1742 |
| 0.2126 | 28.1162 | 3880 | 0.4885 | 0.1706 |
| 0.2262 | 28.4065 | 3920 | 0.4676 | 0.1682 |
| 0.2775 | 28.6969 | 3960 | 0.4397 | 0.1742 |
| 0.2358 | 28.9873 | 4000 | 0.4458 | 0.1701 |
| 0.218 | 29.2759 | 4040 | 0.4713 | 0.1691 |
| 0.2207 | 29.5662 | 4080 | 0.4419 | 0.1703 |
| 0.2147 | 29.8566 | 4120 | 0.4608 | 0.1711 |
| 0.1995 | 30.1452 | 4160 | 0.4934 | 0.1692 |
| 0.1943 | 30.4356 | 4200 | 0.5116 | 0.1672 |
| 0.2239 | 30.7260 | 4240 | 0.4763 | 0.1722 |
| 0.2041 | 31.0145 | 4280 | 0.5133 | 0.1677 |
| 0.1941 | 31.3049 | 4320 | 0.4868 | 0.1716 |
| 0.2145 | 31.5953 | 4360 | 0.4987 | 0.1658 |
| 0.2012 | 31.8857 | 4400 | 0.4862 | 0.1674 |
| 0.1838 | 32.1742 | 4440 | 0.4925 | 0.1671 |
| 0.1902 | 32.4646 | 4480 | 0.4621 | 0.1679 |
| 0.1965 | 32.7550 | 4520 | 0.5015 | 0.1650 |
| 0.225 | 33.0436 | 4560 | 0.5115 | 0.1646 |
| 0.1922 | 33.3339 | 4600 | 0.4819 | 0.1694 |
| 0.2074 | 33.6243 | 4640 | 0.5159 | 0.1711 |
| 0.1936 | 33.9147 | 4680 | 0.4862 | 0.1742 |
| 0.193 | 34.2033 | 4720 | 0.4921 | 0.1675 |
| 0.1973 | 34.4936 | 4760 | 0.5099 | 0.1683 |
| 0.1961 | 34.7840 | 4800 | 0.5103 | 0.1654 |
| 0.1913 | 35.0726 | 4840 | 0.5016 | 0.1678 |
| 0.1853 | 35.3630 | 4880 | 0.5045 | 0.1676 |
| 0.2075 | 35.6534 | 4920 | 0.4951 | 0.1685 |
| 0.2174 | 35.9437 | 4960 | 0.4971 | 0.1685 |
| 0.1767 | 36.2323 | 5000 | 0.4912 | 0.1659 |
| 0.19 | 36.5227 | 5040 | 0.5046 | 0.1671 |
| 0.1821 | 36.8131 | 5080 | 0.5042 | 0.1637 |
| 0.1839 | 37.1016 | 5120 | 0.4957 | 0.1666 |
| 0.1823 | 37.3920 | 5160 | 0.5158 | 0.1613 |
| 0.1966 | 37.6824 | 5200 | 0.5155 | 0.1657 |
| 0.1955 | 37.9728 | 5240 | 0.4994 | 0.1672 |
| 0.1744 | 38.2613 | 5280 | 0.5480 | 0.1625 |
| 0.1992 | 38.5517 | 5320 | 0.5072 | 0.1663 |
| 0.1889 | 38.8421 | 5360 | 0.5028 | 0.1644 |
| 0.1873 | 39.1307 | 5400 | 0.5143 | 0.1649 |
| 0.1777 | 39.4211 | 5440 | 0.5065 | 0.1653 |
| 0.1693 | 39.7114 | 5480 | 0.5121 | 0.1649 |
| 0.1881 | 40.0 | 5520 | 0.5272 | 0.1677 |
| 0.1679 | 40.2904 | 5560 | 0.5214 | 0.1660 |
| 0.1825 | 40.5808 | 5600 | 0.5139 | 0.1627 |
| 0.1732 | 40.8711 | 5640 | 0.5343 | 0.1635 |
| 0.1616 | 41.1597 | 5680 | 0.5213 | 0.1656 |
| 0.1718 | 41.4501 | 5720 | 0.5136 | 0.1653 |
| 0.168 | 41.7405 | 5760 | 0.5221 | 0.1652 |
| 0.1787 | 42.0290 | 5800 | 0.5307 | 0.1655 |
| 0.1809 | 42.3194 | 5840 | 0.5194 | 0.1637 |
| 0.1626 | 42.6098 | 5880 | 0.5261 | 0.1634 |
| 0.1669 | 42.9002 | 5920 | 0.5317 | 0.1644 |
| 0.1623 | 43.1887 | 5960 | 0.5542 | 0.1610 |
| 0.165 | 43.4791 | 6000 | 0.5333 | 0.1651 |
| 0.1666 | 43.7695 | 6040 | 0.5288 | 0.1619 |
| 0.1505 | 44.0581 | 6080 | 0.5532 | 0.1613 |
| 0.1669 | 44.3485 | 6120 | 0.5375 | 0.1620 |
| 0.1551 | 44.6388 | 6160 | 0.5266 | 0.1618 |
| 0.1547 | 44.9292 | 6200 | 0.5281 | 0.1609 |
| 0.1526 | 45.2178 | 6240 | 0.5361 | 0.1599 |
| 0.1824 | 45.5082 | 6280 | 0.5212 | 0.1607 |
| 0.1562 | 45.7985 | 6320 | 0.5350 | 0.1616 |
| 0.1615 | 46.0871 | 6360 | 0.5562 | 0.1594 |
| 0.1646 | 46.3775 | 6400 | 0.5510 | 0.1607 |
| 0.1567 | 46.6679 | 6440 | 0.5427 | 0.1597 |
| 0.1754 | 46.9583 | 6480 | 0.5327 | 0.1604 |
| 0.1483 | 47.2468 | 6520 | 0.5322 | 0.1605 |
| 0.1484 | 47.5372 | 6560 | 0.5507 | 0.1602 |
| 0.1669 | 47.8276 | 6600 | 0.5431 | 0.1605 |
| 0.1654 | 48.1162 | 6640 | 0.5488 | 0.1596 |
| 0.1584 | 48.4065 | 6680 | 0.5497 | 0.1596 |
| 0.1551 | 48.6969 | 6720 | 0.5487 | 0.1603 |
| 0.1362 | 48.9873 | 6760 | 0.5487 | 0.1602 |
| 0.1485 | 49.2759 | 6800 | 0.5450 | 0.1603 |
| 0.1535 | 49.5662 | 6840 | 0.5470 | 0.1600 |
| 0.1613 | 49.8566 | 6880 | 0.5471 | 0.1600 |
Framework versions
- Transformers 4.53.0
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 9
Model tree for minhtien2405/wav2vec2-base-south-vi
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h