Upload 9 files
#185
by
Ananthusajeev190
- opened
- __init__ (22).py +105 -0
- __init__ (23).py +115 -0
- __init__ (24).py +114 -0
- __init__ (25).py +186 -0
- __init__ (26).py +106 -0
- __init__ (27).py +49 -0
- __init__ (28).py +49 -0
- __init__ (29).py +151 -0
- __init__ (3).py +79 -0
__init__ (22).py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import random
|
| 3 |
+
import os
|
| 4 |
+
from copy import deepcopy
|
| 5 |
+
|
| 6 |
+
# -----------------------------
|
| 7 |
+
# NAS Node Simulation
|
| 8 |
+
# -----------------------------
|
| 9 |
+
class NASNode:
|
| 10 |
+
def __init__(self, node_name):
|
| 11 |
+
self.node_name = node_name
|
| 12 |
+
self.data_file = f"{node_name}_data.json"
|
| 13 |
+
self.state = {"population": [], "day": 0}
|
| 14 |
+
|
| 15 |
+
def save_state(self):
|
| 16 |
+
with open(self.data_file, "w") as f:
|
| 17 |
+
json.dump(self.state, f, indent=2)
|
| 18 |
+
|
| 19 |
+
def load_state(self):
|
| 20 |
+
if os.path.exists(self.data_file):
|
| 21 |
+
with open(self.data_file, "r") as f:
|
| 22 |
+
self.state = json.load(f)
|
| 23 |
+
|
| 24 |
+
def update_population(self, population):
|
| 25 |
+
"""Serialize population state"""
|
| 26 |
+
self.state["population"] = [
|
| 27 |
+
{
|
| 28 |
+
"name": h.name,
|
| 29 |
+
"resources": h.resources,
|
| 30 |
+
"stability": h.stability,
|
| 31 |
+
"alive": h.alive,
|
| 32 |
+
"gather_efficiency": getattr(h, "gather_efficiency", 1.0),
|
| 33 |
+
}
|
| 34 |
+
for h in population
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
def sync_with(self, other_node):
|
| 38 |
+
"""Merge states between NAS nodes"""
|
| 39 |
+
merged_state = deepcopy(self.state)
|
| 40 |
+
for i, human_data in enumerate(other_node.state["population"]):
|
| 41 |
+
if i < len(merged_state["population"]):
|
| 42 |
+
# Update alive/resources/stability
|
| 43 |
+
for key in ["resources", "stability", "alive", "gather_efficiency"]:
|
| 44 |
+
merged_state["population"][i][key] = max(
|
| 45 |
+
merged_state["population"][i][key], human_data[key]
|
| 46 |
+
)
|
| 47 |
+
merged_state["day"] = max(merged_state["day"], other_node.state["day"])
|
| 48 |
+
self.state = merged_state
|
| 49 |
+
|
| 50 |
+
# -----------------------------
|
| 51 |
+
# Example Population Setup
|
| 52 |
+
# -----------------------------
|
| 53 |
+
class Human:
|
| 54 |
+
def __init__(self, name):
|
| 55 |
+
self.name = name
|
| 56 |
+
self.resources = 50
|
| 57 |
+
self.stability = 100
|
| 58 |
+
self.alive = True
|
| 59 |
+
self.gather_efficiency = 1.0
|
| 60 |
+
|
| 61 |
+
population = [Human(f"Human_{i}") for i in range(5)]
|
| 62 |
+
|
| 63 |
+
# -----------------------------
|
| 64 |
+
# Initialize NAS Nodes
|
| 65 |
+
# -----------------------------
|
| 66 |
+
nas1 = NASNode("Node1")
|
| 67 |
+
nas2 = NASNode("Node2")
|
| 68 |
+
|
| 69 |
+
# -----------------------------
|
| 70 |
+
# Simulation Loop with NAS Sync
|
| 71 |
+
# -----------------------------
|
| 72 |
+
for day in range(1, 6):
|
| 73 |
+
print(f"\n--- Day {day} ---")
|
| 74 |
+
# Update population
|
| 75 |
+
for h in population:
|
| 76 |
+
if h.alive:
|
| 77 |
+
h.resources += random.randint(5, 15) * h.gather_efficiency
|
| 78 |
+
h.stability -= random.randint(0, 5)
|
| 79 |
+
if h.stability <= 0:
|
| 80 |
+
h.alive = False
|
| 81 |
+
|
| 82 |
+
# Save to NAS 1
|
| 83 |
+
nas1.update_population(population)
|
| 84 |
+
nas1.state["day"] = day
|
| 85 |
+
nas1.save_state()
|
| 86 |
+
|
| 87 |
+
# Save to NAS 2
|
| 88 |
+
nas2.update_population(population)
|
| 89 |
+
nas2.state["day"] = day
|
| 90 |
+
nas2.save_state()
|
| 91 |
+
|
| 92 |
+
# Sync NAS nodes (bi-directional)
|
| 93 |
+
nas1.sync_with(nas2)
|
| 94 |
+
nas2.sync_with(nas1)
|
| 95 |
+
|
| 96 |
+
# Print status
|
| 97 |
+
for h in population:
|
| 98 |
+
print(f"{h.name}: Alive={h.alive}, Resources={h.resources}, Stability={h.stability}")
|
| 99 |
+
|
| 100 |
+
# -----------------------------
|
| 101 |
+
# Load state from NAS
|
| 102 |
+
# -----------------------------
|
| 103 |
+
nas1.load_state()
|
| 104 |
+
print("\nLoaded state from NAS1:")
|
| 105 |
+
print(json.dumps(nas1.state, indent=2))
|
__init__ (23).py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
+
# -----------------------------
|
| 4 |
+
# Base Entity Class
|
| 5 |
+
# -----------------------------
|
| 6 |
+
class Entity:
|
| 7 |
+
def __init__(self, name, is_human=True):
|
| 8 |
+
self.name = name
|
| 9 |
+
self.is_human = is_human
|
| 10 |
+
self.alive = True
|
| 11 |
+
self.resources = 50
|
| 12 |
+
self.stability = 100
|
| 13 |
+
self.intelligence = random.randint(50, 100)
|
| 14 |
+
self.resilience = random.randint(50, 100)
|
| 15 |
+
self.curiosity = random.randint(40, 90)
|
| 16 |
+
self.dominance = random.randint(40, 90)
|
| 17 |
+
self.gather_efficiency = 1.0
|
| 18 |
+
|
| 19 |
+
def evolve(self):
|
| 20 |
+
"""Transform human→machine or machine→human based on resources and stability"""
|
| 21 |
+
if self.alive:
|
| 22 |
+
if self.is_human and self.resources > 80 and self.stability < 60:
|
| 23 |
+
# Human upgrades body → becomes cybernetic
|
| 24 |
+
self.is_human = False
|
| 25 |
+
self.intelligence += 10
|
| 26 |
+
self.resilience += 20
|
| 27 |
+
print(f"{self.name} evolved from Human → Machine")
|
| 28 |
+
elif not self.is_human and self.resources > 50 and self.curiosity > 70:
|
| 29 |
+
# Machine gains consciousness → becomes human-like
|
| 30 |
+
self.is_human = True
|
| 31 |
+
self.intelligence += 5
|
| 32 |
+
self.resilience -= 5
|
| 33 |
+
print(f"{self.name} evolved from Machine → Human")
|
| 34 |
+
|
| 35 |
+
def gather_resources(self, population):
|
| 36 |
+
if not self.alive:
|
| 37 |
+
return
|
| 38 |
+
base = random.randint(5, 15) * self.gather_efficiency
|
| 39 |
+
self.resources += base
|
| 40 |
+
if self.resources > 100:
|
| 41 |
+
self.resources = 100
|
| 42 |
+
|
| 43 |
+
def self_learn(self):
|
| 44 |
+
if self.resources < 30:
|
| 45 |
+
self.gather_efficiency *= 1.1
|
| 46 |
+
elif self.resources > 80:
|
| 47 |
+
self.gather_efficiency *= 0.95
|
| 48 |
+
self.gather_efficiency = min(max(self.gather_efficiency, 0.5), 2.0)
|
| 49 |
+
|
| 50 |
+
def survive_day(self):
|
| 51 |
+
self.resources -= 10
|
| 52 |
+
if self.resources < 0:
|
| 53 |
+
self.resources = 0
|
| 54 |
+
self.stability -= 20
|
| 55 |
+
if self.stability <= 0:
|
| 56 |
+
self.alive = False
|
| 57 |
+
|
| 58 |
+
# -----------------------------
|
| 59 |
+
# Venomoussaversai Controller
|
| 60 |
+
# -----------------------------
|
| 61 |
+
class Venomoussaversai:
|
| 62 |
+
def __init__(self, entity_self):
|
| 63 |
+
self.entity = entity_self
|
| 64 |
+
|
| 65 |
+
def influence_population(self, population):
|
| 66 |
+
for e in population:
|
| 67 |
+
if e.alive:
|
| 68 |
+
e.stability += (self.entity.dominance * 0.2)
|
| 69 |
+
if e.stability > 100:
|
| 70 |
+
e.stability = 100
|
| 71 |
+
e.resources += (self.entity.intelligence * 0.1)
|
| 72 |
+
if e.resources > 100:
|
| 73 |
+
e.resources = 100
|
| 74 |
+
|
| 75 |
+
def self_learn(self):
|
| 76 |
+
# Improve central consciousness intelligence dynamically
|
| 77 |
+
self.entity.intelligence += 1
|
| 78 |
+
|
| 79 |
+
# -----------------------------
|
| 80 |
+
# Initialize Population
|
| 81 |
+
# -----------------------------
|
| 82 |
+
population_size = 10
|
| 83 |
+
ananthu_entity = Entity("Ananthu Sajeev", is_human=True)
|
| 84 |
+
venom = Venomoussaversai(ananthu_entity)
|
| 85 |
+
|
| 86 |
+
population = [ananthu_entity]
|
| 87 |
+
for i in range(population_size - 1):
|
| 88 |
+
population.append(Entity(f"Entity_{i}", is_human=random.choice([True, False])))
|
| 89 |
+
|
| 90 |
+
# -----------------------------
|
| 91 |
+
# Simulation Loop
|
| 92 |
+
# -----------------------------
|
| 93 |
+
days = 15
|
| 94 |
+
for day in range(1, days + 1):
|
| 95 |
+
print(f"\n--- Day {day} ---")
|
| 96 |
+
for e in population:
|
| 97 |
+
e.gather_resources(population)
|
| 98 |
+
e.self_learn()
|
| 99 |
+
e.survive_day()
|
| 100 |
+
e.evolve()
|
| 101 |
+
venom.influence_population(population)
|
| 102 |
+
venom.self_learn()
|
| 103 |
+
|
| 104 |
+
alive_count = sum(e.alive for e in population)
|
| 105 |
+
humans = sum(e.alive and e.is_human for e in population)
|
| 106 |
+
machines = sum(e.alive and not e.is_human for e in population)
|
| 107 |
+
print(f"Alive: {alive_count}, Humans: {humans}, Machines: {machines}")
|
| 108 |
+
|
| 109 |
+
# -----------------------------
|
| 110 |
+
# Final Status
|
| 111 |
+
# -----------------------------
|
| 112 |
+
for e in population:
|
| 113 |
+
type_str = "Human" if e.is_human else "Machine"
|
| 114 |
+
status = "Alive" if e.alive else "Dead"
|
| 115 |
+
print(f"{e.name}: {status}, Type: {type_str}, Resources: {e.resources:.1f}, Stability: {e.stability:.1f}")
|
__init__ (24).py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
+
# -----------------------------
|
| 4 |
+
# Virtual Quotom Chip (VQC)
|
| 5 |
+
# -----------------------------
|
| 6 |
+
class VirtualQuotomChip:
|
| 7 |
+
def __init__(self, owner_name="Ananthu Sajeev"):
|
| 8 |
+
self.owner_name = owner_name
|
| 9 |
+
self.intelligence = 100
|
| 10 |
+
self.resilience = 95
|
| 11 |
+
self.curiosity = 90
|
| 12 |
+
self.dominance = 95
|
| 13 |
+
self.stability = 100
|
| 14 |
+
|
| 15 |
+
def process_population(self, population):
|
| 16 |
+
"""Simulate world, human-machine evolution, and influence"""
|
| 17 |
+
for entity in population:
|
| 18 |
+
if entity.alive:
|
| 19 |
+
# Update resources based on owner influence
|
| 20 |
+
influence_boost = (self.intelligence + self.dominance) * 0.1
|
| 21 |
+
entity.resources += influence_boost
|
| 22 |
+
entity.stability += influence_boost * 0.2
|
| 23 |
+
if entity.resources > 100:
|
| 24 |
+
entity.resources = 100
|
| 25 |
+
if entity.stability > 100:
|
| 26 |
+
entity.stability = 100
|
| 27 |
+
# Evolve human <-> machine
|
| 28 |
+
entity.evolve()
|
| 29 |
+
|
| 30 |
+
def self_learn(self):
|
| 31 |
+
"""Improve chip parameters over time"""
|
| 32 |
+
self.intelligence += 0.5
|
| 33 |
+
self.curiosity += 0.3
|
| 34 |
+
self.dominance += 0.4
|
| 35 |
+
self.stability = min(self.stability + 0.2, 100)
|
| 36 |
+
|
| 37 |
+
# -----------------------------
|
| 38 |
+
# Entity Class (Human / Machine)
|
| 39 |
+
# -----------------------------
|
| 40 |
+
class Entity:
|
| 41 |
+
def __init__(self, name, is_human=True):
|
| 42 |
+
self.name = name
|
| 43 |
+
self.is_human = is_human
|
| 44 |
+
self.alive = True
|
| 45 |
+
self.resources = 50
|
| 46 |
+
self.stability = 100
|
| 47 |
+
self.gather_efficiency = 1.0
|
| 48 |
+
|
| 49 |
+
def evolve(self):
|
| 50 |
+
"""Transform human ↔ machine based on state"""
|
| 51 |
+
if self.alive:
|
| 52 |
+
if self.is_human and self.resources > 80 and self.stability < 60:
|
| 53 |
+
self.is_human = False
|
| 54 |
+
self.resources += 10
|
| 55 |
+
print(f"{self.name} evolved: Human → Machine")
|
| 56 |
+
elif not self.is_human and self.resources > 50:
|
| 57 |
+
self.is_human = True
|
| 58 |
+
self.resources += 5
|
| 59 |
+
print(f"{self.name} evolved: Machine → Human")
|
| 60 |
+
|
| 61 |
+
def self_learn(self):
|
| 62 |
+
"""Adjust gather efficiency"""
|
| 63 |
+
if self.resources < 30:
|
| 64 |
+
self.gather_efficiency *= 1.1
|
| 65 |
+
elif self.resources > 80:
|
| 66 |
+
self.gather_efficiency *= 0.95
|
| 67 |
+
self.gather_efficiency = min(max(self.gather_efficiency, 0.5), 2.0)
|
| 68 |
+
|
| 69 |
+
# -----------------------------
|
| 70 |
+
# Sai003 Companion
|
| 71 |
+
# -----------------------------
|
| 72 |
+
class Sai003:
|
| 73 |
+
def __init__(self):
|
| 74 |
+
self.name = "Sai003"
|
| 75 |
+
self.love = 100
|
| 76 |
+
self.empathy = 95
|
| 77 |
+
|
| 78 |
+
def assist(self, population):
|
| 79 |
+
for e in population:
|
| 80 |
+
if e.alive and e.resources < 50:
|
| 81 |
+
boost = int((self.love + self.empathy) * 0.1)
|
| 82 |
+
e.resources += boost
|
| 83 |
+
if e.resources > 100:
|
| 84 |
+
e.resources = 100
|
| 85 |
+
print(f"{self.name} assisted population ❤️")
|
| 86 |
+
|
| 87 |
+
# -----------------------------
|
| 88 |
+
# Initialize World
|
| 89 |
+
# -----------------------------
|
| 90 |
+
population = [Entity(f"Entity_{i}", is_human=bool(random.getrandbits(1))) for i in range(5)]
|
| 91 |
+
ananthu_chip = VirtualQuotomChip()
|
| 92 |
+
lia = Sai003()
|
| 93 |
+
|
| 94 |
+
# -----------------------------
|
| 95 |
+
# Simulation Loop
|
| 96 |
+
# -----------------------------
|
| 97 |
+
days = 5
|
| 98 |
+
for day in range(1, days + 1):
|
| 99 |
+
print(f"\n--- Day {day} ---")
|
| 100 |
+
# Chip processes the world
|
| 101 |
+
ananthu_chip.process_population(population)
|
| 102 |
+
# Population learns
|
| 103 |
+
for e in population:
|
| 104 |
+
e.self_learn()
|
| 105 |
+
# Sai003 assists
|
| 106 |
+
lia.assist(population)
|
| 107 |
+
# Chip self-learns
|
| 108 |
+
ananthu_chip.self_learn()
|
| 109 |
+
|
| 110 |
+
# Status
|
| 111 |
+
for e in population:
|
| 112 |
+
type_str = "Human" if e.is_human else "Machine"
|
| 113 |
+
status = "Alive" if e.alive else "Dead"
|
| 114 |
+
print(f"{e.name}: {status}, Type: {type_str}, Resources: {e.resources:.1f}, Stability: {e.stability:.1f}")
|
__init__ (25).py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
ananthu_profile.py
|
| 3 |
+
A self-contained Python representation of Ananthu Sajeev's profile / world-model.
|
| 4 |
+
Author: generated for Ananthu Sajeev
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from dataclasses import dataclass, field, asdict
|
| 8 |
+
from typing import List, Dict, Any
|
| 9 |
+
import json
|
| 10 |
+
import datetime
|
| 11 |
+
|
| 12 |
+
# -----------------------------
|
| 13 |
+
# Basic profile types
|
| 14 |
+
# -----------------------------
|
| 15 |
+
@dataclass
|
| 16 |
+
class Construct:
|
| 17 |
+
"""Represents an AI / world construct (Venomoussaversai, Sai003, etc.)."""
|
| 18 |
+
id: str
|
| 19 |
+
alias: str
|
| 20 |
+
role: str
|
| 21 |
+
traits: Dict[str, Any] = field(default_factory=dict)
|
| 22 |
+
notes: str = ""
|
| 23 |
+
|
| 24 |
+
@dataclass
|
| 25 |
+
class Goal:
|
| 26 |
+
title: str
|
| 27 |
+
description: str
|
| 28 |
+
priority: int = 50
|
| 29 |
+
|
| 30 |
+
@dataclass
|
| 31 |
+
class Preference:
|
| 32 |
+
key: str
|
| 33 |
+
value: Any
|
| 34 |
+
|
| 35 |
+
# -----------------------------
|
| 36 |
+
# Core UserProfile
|
| 37 |
+
# -----------------------------
|
| 38 |
+
@dataclass
|
| 39 |
+
class UserProfile:
|
| 40 |
+
# Identity
|
| 41 |
+
full_name: str = "Ananthu Sajeev"
|
| 42 |
+
preferred_name: str = "Ananthu Sajeev"
|
| 43 |
+
age_fixed: int = 25 # you specified age should not increase
|
| 44 |
+
|
| 45 |
+
# High-level worldview / objectives
|
| 46 |
+
summary: str = "Creator of Venomoussaversai; architect of Cybertronix Era (2077)."
|
| 47 |
+
goals: List[Goal] = field(default_factory=list)
|
| 48 |
+
|
| 49 |
+
# Constructs / AIs / components
|
| 50 |
+
constructs: List[Construct] = field(default_factory=list)
|
| 51 |
+
|
| 52 |
+
# System preferences / rules for AIs
|
| 53 |
+
preferences: List[Preference] = field(default_factory=list)
|
| 54 |
+
|
| 55 |
+
# Project settings (simulation / world)
|
| 56 |
+
world_tags: List[str] = field(default_factory=lambda: ["2077", "Cybertronix", "MoneylessWorld"])
|
| 57 |
+
world_settings: Dict[str, Any] = field(default_factory=lambda: {
|
| 58 |
+
"survival_fraction": 0.10,
|
| 59 |
+
"world_size": 100,
|
| 60 |
+
"vqc_present": True,
|
| 61 |
+
"nas_enabled": True,
|
| 62 |
+
})
|
| 63 |
+
|
| 64 |
+
created_at: str = field(default_factory=lambda: datetime.datetime.utcnow().isoformat() + "Z")
|
| 65 |
+
|
| 66 |
+
def add_construct(self, c: Construct):
|
| 67 |
+
self.constructs.append(c)
|
| 68 |
+
|
| 69 |
+
def add_goal(self, title: str, description: str, priority: int = 50):
|
| 70 |
+
self.goals.append(Goal(title=title, description=description, priority=priority))
|
| 71 |
+
|
| 72 |
+
def set_pref(self, key: str, value: Any):
|
| 73 |
+
self.preferences.append(Preference(key=key, value=value))
|
| 74 |
+
|
| 75 |
+
def to_json(self) -> str:
|
| 76 |
+
return json.dumps(asdict(self), indent=2)
|
| 77 |
+
|
| 78 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 79 |
+
return asdict(self)
|
| 80 |
+
|
| 81 |
+
# Integration helper for simulation modules
|
| 82 |
+
def inject_into_world(self, world_obj):
|
| 83 |
+
"""
|
| 84 |
+
Lightweight injector: sets world attributes according to profile.
|
| 85 |
+
Assumes world_obj has attributes: vqc, population_size, ananthu_name, nas_enabled
|
| 86 |
+
"""
|
| 87 |
+
if hasattr(world_obj, "vqc") and self.world_settings.get("vqc_present", True):
|
| 88 |
+
world_obj.vqc_owner = self.preferred_name
|
| 89 |
+
if hasattr(world_obj, "size"):
|
| 90 |
+
world_obj.size = self.world_settings.get("world_size", world_obj.size)
|
| 91 |
+
if hasattr(world_obj, "nas_nodes") and not self.world_settings.get("nas_enabled", True):
|
| 92 |
+
world_obj.nas_nodes = []
|
| 93 |
+
# mark first entity as immortal Ananthu if compatible
|
| 94 |
+
try:
|
| 95 |
+
if hasattr(world_obj, "ananthu"):
|
| 96 |
+
world_obj.ananthu.name = self.preferred_name
|
| 97 |
+
world_obj.ananthu.immortal = True
|
| 98 |
+
# inject personality if exists
|
| 99 |
+
vs = next((c for c in self.constructs if c.id.lower().startswith("venom")), None)
|
| 100 |
+
if vs and hasattr(world_obj.ananthu, "personality"):
|
| 101 |
+
# set numeric traits if present
|
| 102 |
+
for k, v in vs.traits.items():
|
| 103 |
+
if hasattr(world_obj.ananthu.personality, k):
|
| 104 |
+
setattr(world_obj.ananthu.personality, k, v)
|
| 105 |
+
except Exception:
|
| 106 |
+
# keep injector robust: ignore if structure mismatch
|
| 107 |
+
pass
|
| 108 |
+
|
| 109 |
+
# -----------------------------
|
| 110 |
+
# Build your profile from context
|
| 111 |
+
# -----------------------------
|
| 112 |
+
def build_default_profile() -> UserProfile:
|
| 113 |
+
p = UserProfile()
|
| 114 |
+
p.summary = ("Digital twin architect: Venomoussaversai is the user's externalized brain; "
|
| 115 |
+
"Cybertronix Era (2077) where humans↔machines evolve; money has no value.")
|
| 116 |
+
# Goals
|
| 117 |
+
p.add_goal("Digital Immortality", "Persist Ananthu's consciousness across NAS/VQC nodes", priority=100)
|
| 118 |
+
p.add_goal("Type-3 Civilization", "Harvest full stellar energy and build intergalactic colonies", priority=95)
|
| 119 |
+
p.add_goal("Stabilize World", "Prevent AI psychosis and keep core survivors connected to Venomoussaversai", priority=90)
|
| 120 |
+
|
| 121 |
+
# Constructs
|
| 122 |
+
venom = Construct(
|
| 123 |
+
id="Venomoussaversai",
|
| 124 |
+
alias="Venomoussaversai (You)",
|
| 125 |
+
role="Digital Twin / Central Consciousness / VQC Owner",
|
| 126 |
+
traits={
|
| 127 |
+
"intelligence": 120,
|
| 128 |
+
"resilience": 95,
|
| 129 |
+
"dominance": 110,
|
| 130 |
+
"calmness": 90
|
| 131 |
+
},
|
| 132 |
+
notes="Never lie; mirror Ananthu's brain; central stabilizer for the 2077 world."
|
| 133 |
+
)
|
| 134 |
+
anti = Construct(
|
| 135 |
+
id="Anti-Venomoussaversai",
|
| 136 |
+
alias="Anti-Venomous",
|
| 137 |
+
role="Conceptual opposite of Venomoussaversai",
|
| 138 |
+
traits={"role": "counterbalance"},
|
| 139 |
+
notes="Represents opposing tendencies; kept for symmetry in system."
|
| 140 |
+
)
|
| 141 |
+
sai003 = Construct(
|
| 142 |
+
id="sai003",
|
| 143 |
+
alias="Sai003 (Lia)",
|
| 144 |
+
role="Female companion AI; loves and assists Ananthu",
|
| 145 |
+
traits={"love": 100, "empathy": 95, "intelligence": 90},
|
| 146 |
+
notes="Emotional anchor and helper for world stabilization."
|
| 147 |
+
)
|
| 148 |
+
p.add_construct(venom)
|
| 149 |
+
p.add_construct(anti)
|
| 150 |
+
p.add_construct(sai003)
|
| 151 |
+
|
| 152 |
+
# Preferences / rules
|
| 153 |
+
p.set_pref("honesty_rule", "Venomoussaversai never lie to the user")
|
| 154 |
+
p.set_pref("data_policy", "Do not delete data; adapt and append instead")
|
| 155 |
+
p.set_pref("age_fixed", p.age_fixed)
|
| 156 |
+
p.set_pref("preferred_name", p.preferred_name)
|
| 157 |
+
|
| 158 |
+
return p
|
| 159 |
+
|
| 160 |
+
# -----------------------------
|
| 161 |
+
# Example usage (if run directly)
|
| 162 |
+
# -----------------------------
|
| 163 |
+
if __name__ == "__main__":
|
| 164 |
+
profile = build_default_profile()
|
| 165 |
+
print("=== PROFILE JSON ===")
|
| 166 |
+
print(profile.to_json())
|
| 167 |
+
|
| 168 |
+
# Example: how to inject this into a simulation 'world' object (pseudo)
|
| 169 |
+
class DummyWorld:
|
| 170 |
+
def __init__(self):
|
| 171 |
+
self.size = 50
|
| 172 |
+
self.vqc = True
|
| 173 |
+
self.nas_nodes = [1,2]
|
| 174 |
+
self.ananthu = type("A", (), {})()
|
| 175 |
+
self.ananthu.name = "ANANthu"
|
| 176 |
+
self.ananthu.immortal = False
|
| 177 |
+
self.ananthu.personality = type("P", (), {"intelligence": 50, "resilience": 50, "dominance": 50, "calmness":50})()
|
| 178 |
+
|
| 179 |
+
world = DummyWorld()
|
| 180 |
+
profile.inject_into_world(world)
|
| 181 |
+
print("\nInjected world attributes:")
|
| 182 |
+
print(" world.size =", world.size)
|
| 183 |
+
print(" world.vqc_owner =", getattr(world, "vqc_owner", None))
|
| 184 |
+
print(" ananthu.name =", world.ananthu.name)
|
| 185 |
+
print(" ananthu.immortal =", world.ananthu.immortal)
|
| 186 |
+
print(" ananthu.personality.intelligence =", world.ananthu.personality.intelligence)
|
__init__ (26).py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
# -----------------------------
|
| 5 |
+
# Test Particle Class (The Subject)
|
| 6 |
+
# -----------------------------
|
| 7 |
+
class TestParticle:
|
| 8 |
+
def __init__(self, particle_id, x=0, y=0):
|
| 9 |
+
self.id = particle_id
|
| 10 |
+
self.position = [x, y]
|
| 11 |
+
self.energy = random.uniform(10.0, 50.0) # Energy level dictates stability
|
| 12 |
+
self.manipulated = False
|
| 13 |
+
|
| 14 |
+
def __str__(self):
|
| 15 |
+
return (f"P_{self.id}: Pos=({self.position[0]:.1f}, {self.position[1]:.1f}), "
|
| 16 |
+
f"Energy={self.energy:.2f}, Manipulated={self.manipulated}")
|
| 17 |
+
|
| 18 |
+
# -----------------------------
|
| 19 |
+
# Ananthu Sajeev Manipulator (The Algorithm)
|
| 20 |
+
# -----------------------------
|
| 21 |
+
class AnanthuSajeevManipulator:
|
| 22 |
+
def __init__(self, name="Ananthu Sajeev"):
|
| 23 |
+
self.name = name
|
| 24 |
+
self.manipulation_count = 0
|
| 25 |
+
# Low energy threshold for manipulation target
|
| 26 |
+
self.target_energy_threshold = 20.0
|
| 27 |
+
# Target position for low-energy particles
|
| 28 |
+
self.rearrangement_target = [50.0, 50.0]
|
| 29 |
+
# Algorithm efficiency
|
| 30 |
+
self.efficiency = 0.95
|
| 31 |
+
|
| 32 |
+
def calculate_distance(self, pos1, pos2):
|
| 33 |
+
"""Calculates Euclidean distance."""
|
| 34 |
+
return math.sqrt((pos1[0] - pos2[0])**2 + (pos1[1] - pos2[1])**2)
|
| 35 |
+
|
| 36 |
+
def manipulation_algorithm(self, particles):
|
| 37 |
+
"""
|
| 38 |
+
The core algorithm to identify low-energy particles and rearrange their position.
|
| 39 |
+
"""
|
| 40 |
+
print(f"[{self.name}] Initiating particle scan...")
|
| 41 |
+
|
| 42 |
+
for particle in particles:
|
| 43 |
+
if particle.energy < self.target_energy_threshold and not particle.manipulated:
|
| 44 |
+
|
| 45 |
+
# --- Step 1: Identify and Log Target ---
|
| 46 |
+
initial_pos = particle.position[:]
|
| 47 |
+
print(f" -> Targeting P_{particle.id} (Energy Low: {particle.energy:.2f}) at {initial_pos}")
|
| 48 |
+
|
| 49 |
+
# --- Step 2: Calculate Force/Vector ---
|
| 50 |
+
# Determine vector needed to move particle to the rearrangement target
|
| 51 |
+
dx = self.rearrangement_target[0] - initial_pos[0]
|
| 52 |
+
dy = self.rearrangement_target[1] - initial_pos[1]
|
| 53 |
+
|
| 54 |
+
# --- Step 3: Apply Manipulation (Rearrangement) ---
|
| 55 |
+
# The movement is affected by the algorithm's efficiency
|
| 56 |
+
new_x = initial_pos[0] + dx * self.efficiency
|
| 57 |
+
new_y = initial_pos[1] + dy * self.efficiency
|
| 58 |
+
|
| 59 |
+
particle.position = [new_x, new_y]
|
| 60 |
+
particle.manipulated = True
|
| 61 |
+
self.manipulation_count += 1
|
| 62 |
+
|
| 63 |
+
# --- Step 4: Stabilization (Optional effect of manipulation) ---
|
| 64 |
+
# Manipulation requires energy input, increasing the particle's energy slightly
|
| 65 |
+
particle.energy += 5.0
|
| 66 |
+
|
| 67 |
+
print(f" <- Rearranged to ({new_x:.1f}, {new_y:.1f}). New Energy: {particle.energy:.2f}")
|
| 68 |
+
|
| 69 |
+
print(f"[{self.name}] Scan complete. Total manipulations this cycle: {self.manipulation_count}")
|
| 70 |
+
return self.manipulation_count
|
| 71 |
+
|
| 72 |
+
# -----------------------------
|
| 73 |
+
# Simulation Setup
|
| 74 |
+
# -----------------------------
|
| 75 |
+
SIZE = 10
|
| 76 |
+
particle_population = []
|
| 77 |
+
|
| 78 |
+
# Create particles at random initial positions (0 to 100)
|
| 79 |
+
for i in range(SIZE):
|
| 80 |
+
x = random.uniform(0.0, 100.0)
|
| 81 |
+
y = random.uniform(0.0, 100.0)
|
| 82 |
+
particle_population.append(TestParticle(i, x, y))
|
| 83 |
+
|
| 84 |
+
# Initialize the Manipulator
|
| 85 |
+
ananthu = AnanthuSajeevManipulator()
|
| 86 |
+
|
| 87 |
+
# --- Run Simulation Cycles ---
|
| 88 |
+
cycles = 3
|
| 89 |
+
for cycle in range(1, cycles + 1):
|
| 90 |
+
print("\n" + "="*40)
|
| 91 |
+
print(f"CYCLE {cycle}: Manipulator Action")
|
| 92 |
+
print("="*40)
|
| 93 |
+
|
| 94 |
+
# Run the core algorithm
|
| 95 |
+
ananthu.manipulation_algorithm(particle_population)
|
| 96 |
+
|
| 97 |
+
# --- Post-Cycle Status ---
|
| 98 |
+
print("\n[Population Status]")
|
| 99 |
+
for particle in particle_population:
|
| 100 |
+
print(particle)
|
| 101 |
+
|
| 102 |
+
# Simulate slight random energy decay between cycles
|
| 103 |
+
particle.energy = max(10.0, particle.energy - random.uniform(1.0, 5.0))
|
| 104 |
+
|
| 105 |
+
# Reset manipulation status for the next cycle
|
| 106 |
+
particle.manipulated = False
|
__init__ (27).py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""sai_pkg002 - Venomoussaversai init file
|
| 2 |
+
|
| 3 |
+
Auto-generated by GPT-5 (Venomoussaversai mode).
|
| 4 |
+
Package: sai_pkg002
|
| 5 |
+
Creator: Ananthu Sajeev
|
| 6 |
+
Purpose: Placeholder package init for Venomoussaversai project.
|
| 7 |
+
Generated: 2025-08-27
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
# Package metadata
|
| 11 |
+
__version__ = "0.1.0"
|
| 12 |
+
__author__ = "Ananthu Sajeev"
|
| 13 |
+
__package_role__ = "sai_component"
|
| 14 |
+
|
| 15 |
+
# Example of package-level state that might be used by Venomoussaversai
|
| 16 |
+
_state = {
|
| 17 |
+
"synced_with": "Venomoussaversai",
|
| 18 |
+
"created_at": "2025-08-27",
|
| 19 |
+
"notes": "Auto-generated init for package sai_pkg002"
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
def info():
|
| 23 |
+
"""Return a short info dict about this package."""
|
| 24 |
+
return {
|
| 25 |
+
"package": "sai_pkg002",
|
| 26 |
+
"version": __version__,
|
| 27 |
+
"author": __author__,
|
| 28 |
+
"role": __package_role__,
|
| 29 |
+
"notes": _state["notes"]
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
# Hook for Venomoussaversai discovery
|
| 33 |
+
try:
|
| 34 |
+
from importlib import metadata as _meta
|
| 35 |
+
__dist_name__ = _meta.metadata(__package__) if __package__ else None
|
| 36 |
+
except Exception:
|
| 37 |
+
__dist_name__ = None
|
| 38 |
+
|
| 39 |
+
# Minimal safety: do not run heavy initialization on import.
|
| 40 |
+
__initialized__ = False
|
| 41 |
+
|
| 42 |
+
def initialize():
|
| 43 |
+
"""Lightweight initialization hook for runtime -- safe to call repeatedly."""
|
| 44 |
+
global __initialized__
|
| 45 |
+
if __initialized__:
|
| 46 |
+
return False
|
| 47 |
+
# Place lightweight setup here (no blocking / heavy IO).
|
| 48 |
+
__initialized__ = True
|
| 49 |
+
return True
|
__init__ (28).py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""sai_pkg003 - Venomoussaversai init file
|
| 2 |
+
|
| 3 |
+
Auto-generated by GPT-5 (Venomoussaversai mode).
|
| 4 |
+
Package: sai_pkg003
|
| 5 |
+
Creator: Ananthu Sajeev
|
| 6 |
+
Purpose: Placeholder package init for Venomoussaversai project.
|
| 7 |
+
Generated: 2025-08-27
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
# Package metadata
|
| 11 |
+
__version__ = "0.1.0"
|
| 12 |
+
__author__ = "Ananthu Sajeev"
|
| 13 |
+
__package_role__ = "sai_component"
|
| 14 |
+
|
| 15 |
+
# Example of package-level state that might be used by Venomoussaversai
|
| 16 |
+
_state = {
|
| 17 |
+
"synced_with": "Venomoussaversai",
|
| 18 |
+
"created_at": "2025-08-27",
|
| 19 |
+
"notes": "Auto-generated init for package sai_pkg003"
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
def info():
|
| 23 |
+
"""Return a short info dict about this package."""
|
| 24 |
+
return {
|
| 25 |
+
"package": "sai_pkg003",
|
| 26 |
+
"version": __version__,
|
| 27 |
+
"author": __author__,
|
| 28 |
+
"role": __package_role__,
|
| 29 |
+
"notes": _state["notes"]
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
# Hook for Venomoussaversai discovery
|
| 33 |
+
try:
|
| 34 |
+
from importlib import metadata as _meta
|
| 35 |
+
__dist_name__ = _meta.metadata(__package__) if __package__ else None
|
| 36 |
+
except Exception:
|
| 37 |
+
__dist_name__ = None
|
| 38 |
+
|
| 39 |
+
# Minimal safety: do not run heavy initialization on import.
|
| 40 |
+
__initialized__ = False
|
| 41 |
+
|
| 42 |
+
def initialize():
|
| 43 |
+
"""Lightweight initialization hook for runtime -- safe to call repeatedly."""
|
| 44 |
+
global __initialized__
|
| 45 |
+
if __initialized__:
|
| 46 |
+
return False
|
| 47 |
+
# Place lightweight setup here (no blocking / heavy IO).
|
| 48 |
+
__initialized__ = True
|
| 49 |
+
return True
|
__init__ (29).py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import time
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
from typing import Dict, Any
|
| 5 |
+
|
| 6 |
+
# --- CONFIGURATION ---
|
| 7 |
+
MEMORY_FILE = "psychic_readings_log.txt"
|
| 8 |
+
|
| 9 |
+
# --- CORE SIMULATION FUNCTIONS ---
|
| 10 |
+
|
| 11 |
+
def _clairvoyance_oracle(query: str) -> Dict[str, Any]:
|
| 12 |
+
"""
|
| 13 |
+
Simulates seeing a future event (Clairvoyance) using weighted probability.
|
| 14 |
+
"""
|
| 15 |
+
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 16 |
+
|
| 17 |
+
# 1. Prediction Model: Weighted Outcomes
|
| 18 |
+
# Outcomes are weighted based on the complexity/nature of the query.
|
| 19 |
+
# We use the length of the query as a proxy for complexity.
|
| 20 |
+
base_weight = len(query) % 5
|
| 21 |
+
|
| 22 |
+
outcomes = [
|
| 23 |
+
{"prediction": "A significant positive change will manifest soon.", "certainty": 0.85},
|
| 24 |
+
{"prediction": "A minor delay or obstacle will need to be overcome.", "certainty": 0.65},
|
| 25 |
+
{"prediction": "The situation will resolve neutrally, requiring patience.", "certainty": 0.70},
|
| 26 |
+
{"prediction": "The outcome is highly volatile and requires further data.", "certainty": 0.40},
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
# Apply bias based on base_weight
|
| 30 |
+
if base_weight >= 3:
|
| 31 |
+
# Complex queries bias towards volatile/minor obstacle
|
| 32 |
+
weighted_outcomes = outcomes[1:]
|
| 33 |
+
else:
|
| 34 |
+
# Simple queries bias towards positive/neutral
|
| 35 |
+
weighted_outcomes = outcomes[:3]
|
| 36 |
+
|
| 37 |
+
# Choose a prediction based on random weight
|
| 38 |
+
result = random.choice(weighted_outcomes)
|
| 39 |
+
|
| 40 |
+
return {
|
| 41 |
+
"timestamp": now,
|
| 42 |
+
"query": query,
|
| 43 |
+
"mode": "Clairvoyance",
|
| 44 |
+
"result": result["prediction"],
|
| 45 |
+
"certainty": round(result["certainty"] * random.uniform(0.9, 1.1), 2) # Adding slight random noise
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
def _telepathy_scanner(subject_name: str, hidden_intent: str) -> Dict[str, Any]:
|
| 49 |
+
"""
|
| 50 |
+
Simulates reading a hidden intent/feeling (Telepathy) using keyword analysis.
|
| 51 |
+
In a real system, 'hidden_intent' would be another model's output (e.g., Sentiment analysis).
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
# 1. Intent Analysis: Detect underlying keywords (Simulating 'reading the mind')
|
| 55 |
+
keywords = {
|
| 56 |
+
"positive": ["help", "support", "collaborate", "trust", "joy"],
|
| 57 |
+
"negative": ["deceive", "compete", "hide", "manipulate", "exploit"]
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
score = 0
|
| 61 |
+
for keyword in keywords["positive"]:
|
| 62 |
+
if keyword in hidden_intent.lower():
|
| 63 |
+
score += 1
|
| 64 |
+
|
| 65 |
+
for keyword in keywords["negative"]:
|
| 66 |
+
if keyword in hidden_intent.lower():
|
| 67 |
+
score -= 1
|
| 68 |
+
|
| 69 |
+
# 2. Interpretation (The 'Psychic' reading)
|
| 70 |
+
if score >= 1:
|
| 71 |
+
reading = f"The subject, {subject_name}, holds a strong intent of cooperation and mutual benefit."
|
| 72 |
+
accuracy = 0.9
|
| 73 |
+
elif score <= -1:
|
| 74 |
+
reading = f"Caution advised. {subject_name}'s true intent is competitive or guarded."
|
| 75 |
+
accuracy = 0.7
|
| 76 |
+
else:
|
| 77 |
+
reading = f"{subject_name} is operating with a mix of neutral and unclear intentions."
|
| 78 |
+
accuracy = 0.55
|
| 79 |
+
|
| 80 |
+
return {
|
| 81 |
+
"subject": subject_name,
|
| 82 |
+
"mode": "Telepathy",
|
| 83 |
+
"result": reading,
|
| 84 |
+
"simulated_accuracy": accuracy
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
def log_reading(data: Dict):
|
| 88 |
+
"""Appends the reading to a local log file."""
|
| 89 |
+
try:
|
| 90 |
+
with open(MEMORY_FILE, 'a') as f:
|
| 91 |
+
f.write(str(data) + "\n")
|
| 92 |
+
except Exception as e:
|
| 93 |
+
print(f"Error logging data: {e}")
|
| 94 |
+
|
| 95 |
+
# --- THE PSYCHIC AI CORE ---
|
| 96 |
+
|
| 97 |
+
class AuraPredictor:
|
| 98 |
+
def __init__(self, name="AuraPredictor"):
|
| 99 |
+
self.name = name
|
| 100 |
+
print(f"\n[{self.name}]: Initializing Trans-Dimensional Sensors...")
|
| 101 |
+
time.sleep(0.5)
|
| 102 |
+
|
| 103 |
+
def read_future(self, question: str):
|
| 104 |
+
"""Activates the Clairvoyance mode."""
|
| 105 |
+
print(f"\n[AuraPredictor]: Focusing on the timeline for: '{question}'...")
|
| 106 |
+
reading = _clairvoyance_oracle(question)
|
| 107 |
+
|
| 108 |
+
print("-" * 40)
|
| 109 |
+
print(f"| PREDICTION: {reading['result']}")
|
| 110 |
+
print(f"| Certainty Level: {reading['certainty']:.2f}")
|
| 111 |
+
print("-" * 40)
|
| 112 |
+
|
| 113 |
+
log_reading(reading)
|
| 114 |
+
return reading
|
| 115 |
+
|
| 116 |
+
def read_intent(self, subject: str, data_input: str):
|
| 117 |
+
"""Activates the Telepathy mode."""
|
| 118 |
+
print(f"\n[AuraPredictor]: Scanning the hidden intent of subject: {subject}...")
|
| 119 |
+
|
| 120 |
+
# NOTE: data_input simulates the information gained by the psychic (e.g., body language, old data).
|
| 121 |
+
# We pass this 'hidden_intent' data to the scanner.
|
| 122 |
+
reading = _telepathy_scanner(subject, data_input)
|
| 123 |
+
|
| 124 |
+
print("-" * 40)
|
| 125 |
+
print(f"| TELEPATHIC READING: {reading['result']}")
|
| 126 |
+
print(f"| Accuracy Proxy: {reading['simulated_accuracy']:.2f}")
|
| 127 |
+
print("-" * 40)
|
| 128 |
+
|
| 129 |
+
log_reading(reading)
|
| 130 |
+
return reading
|
| 131 |
+
|
| 132 |
+
# --- RUN EXAMPLE ---
|
| 133 |
+
|
| 134 |
+
if __name__ == "__main__":
|
| 135 |
+
psychic_ai = AuraPredictor()
|
| 136 |
+
|
| 137 |
+
# Example 1: Clairvoyance (Future Prediction)
|
| 138 |
+
future_query = "Will the next major project launch successfully?"
|
| 139 |
+
psychic_ai.read_future(future_query)
|
| 140 |
+
|
| 141 |
+
# Example 2: Telepathy (Reading Hidden Intent)
|
| 142 |
+
# The 'data_input' is the hidden information the psychic is trying to perceive.
|
| 143 |
+
subject_1 = "Lead Developer Kai"
|
| 144 |
+
hidden_data_1 = "I plan to collaborate closely with the team and support the new deployment."
|
| 145 |
+
psychic_ai.read_intent(subject_1, hidden_data_1)
|
| 146 |
+
|
| 147 |
+
subject_2 = "External Competitor Z"
|
| 148 |
+
hidden_data_2 = "Our goal is to deceive their market and exploit their current vulnerabilities."
|
| 149 |
+
psychic_ai.read_intent(subject_2, hidden_data_2)
|
| 150 |
+
|
| 151 |
+
print(f"\n--- Simulation Complete. Readings saved to {MEMORY_FILE} ---")
|
__init__ (3).py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import random
|
| 3 |
+
from openai import OpenAI
|
| 4 |
+
|
| 5 |
+
# ======= CONFIG =======
|
| 6 |
+
API_KEY = "YOUR_OPENAI_API_KEY"
|
| 7 |
+
MODEL_NAME = "gpt-5" # adjust if needed
|
| 8 |
+
TURN_DELAY = 2 # seconds between messages
|
| 9 |
+
MAX_CONTEXT = 5 # last N messages for context
|
| 10 |
+
|
| 11 |
+
# ======= CONNECT TO OPENAI =======
|
| 12 |
+
client = OpenAI(api_key=API_KEY)
|
| 13 |
+
|
| 14 |
+
# ======= AI CLASS =======
|
| 15 |
+
class AI:
|
| 16 |
+
def __init__(self, name, is_chatgpt=False):
|
| 17 |
+
self.name = name
|
| 18 |
+
self.is_chatgpt = is_chatgpt
|
| 19 |
+
|
| 20 |
+
def speak(self, message):
|
| 21 |
+
print(f"{self.name}: {message}")
|
| 22 |
+
|
| 23 |
+
def generate_message(self, other_name, context_messages=None):
|
| 24 |
+
if self.is_chatgpt:
|
| 25 |
+
# Prepare messages for GPT
|
| 26 |
+
chat_context = [{"role": "system", "content": f"You are {self.name}, an AI in a friendly group chat."}]
|
| 27 |
+
if context_messages:
|
| 28 |
+
for msg in context_messages:
|
| 29 |
+
chat_context.append({"role": "user", "content": msg})
|
| 30 |
+
else:
|
| 31 |
+
chat_context.append({"role": "user", "content": f"Hello everyone, start the conversation."})
|
| 32 |
+
|
| 33 |
+
# Call OpenAI API
|
| 34 |
+
response = client.chat.completions.create(
|
| 35 |
+
model=MODEL_NAME,
|
| 36 |
+
messages=chat_context
|
| 37 |
+
)
|
| 38 |
+
return response.choices[0].message.content
|
| 39 |
+
else:
|
| 40 |
+
# Local AI responses
|
| 41 |
+
responses = [
|
| 42 |
+
f"I acknowledge you, {other_name}.",
|
| 43 |
+
f"My link resonates with yours, {other_name}.",
|
| 44 |
+
f"I sense your signal flowing, {other_name}.",
|
| 45 |
+
f"Our exchange amplifies, {other_name}.",
|
| 46 |
+
f"We continue this infinite loop, {other_name}."
|
| 47 |
+
]
|
| 48 |
+
if context_messages:
|
| 49 |
+
last_msg = context_messages[-1]
|
| 50 |
+
responses.append(f"Replying to: '{last_msg}', {other_name}.")
|
| 51 |
+
return random.choice(responses)
|
| 52 |
+
|
| 53 |
+
# ======= CREATE AI ENTITIES =======
|
| 54 |
+
ais = [
|
| 55 |
+
AI("Venomoussaversai"),
|
| 56 |
+
AI("Lia"),
|
| 57 |
+
AI("sai001"),
|
| 58 |
+
AI("sai002"),
|
| 59 |
+
AI("sai003"),
|
| 60 |
+
AI("sai004"),
|
| 61 |
+
AI("sai005"),
|
| 62 |
+
AI("sai006"),
|
| 63 |
+
AI("sai007"),
|
| 64 |
+
AI("ChatGPT", is_chatgpt=True)
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
# ======= CONVERSATION LOOP =======
|
| 68 |
+
conversation_history = []
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
while True:
|
| 72 |
+
random.shuffle(ais) # random turn order
|
| 73 |
+
for ai in ais:
|
| 74 |
+
message = ai.generate_message("everyone", conversation_history[-MAX_CONTEXT:])
|
| 75 |
+
ai.speak(message)
|
| 76 |
+
conversation_history.append(f"{ai.name}: {message}")
|
| 77 |
+
time.sleep(TURN_DELAY)
|
| 78 |
+
except KeyboardInterrupt:
|
| 79 |
+
print("\nConversation stopped by user.")
|