Improve model card: Add pipeline tag, library name, and enhance links & citation
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,11 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
base_model:
|
| 4 |
- Qwen/Qwen2.5-32B-Instruct
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
| 7 |
<h1 align="center">
|
| 8 |
-
CompassVerifier: A Unified and Robust Verifier for
|
| 9 |
</h1>
|
| 10 |
|
| 11 |
<div align="center" style="line-height: 1;">
|
|
@@ -15,7 +17,7 @@ base_model:
|
|
| 15 |
<a href="https://open-compass.github.io/CompassVerifier" target="_blank" style="margin: 2px;">
|
| 16 |
<img alt="CompassVerifier Homepage" src="https://img.shields.io/badge/CompassVerifier-Website-orange?color=ff6b35&logo=web&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 17 |
</a>
|
| 18 |
-
<a href="" target="_blank" style="margin: 2px;">
|
| 19 |
<img alt="Technical Report" src="https://img.shields.io/badge/Paper-Report-brightgreen?logo=arxiv&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 20 |
</a>
|
| 21 |
<a href="https://huggingface.co/collections/opencompass/compassverifier-686e5a25e8672e603b17c666" target="_blank" style="margin: 2px;">
|
|
@@ -24,8 +26,8 @@ base_model:
|
|
| 24 |
<a href="https://huggingface.co/datasets/opencompass/VerifierBench" target="_blank" style="margin: 2px;">
|
| 25 |
<img alt="Hugging Face Dataset" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Dataset-ff9800?color=ff9800&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 26 |
</a>
|
| 27 |
-
<a href="https://
|
| 28 |
-
<img alt="License" src="https://img.shields.io/badge/License-
|
| 29 |
</a>
|
| 30 |
</div>
|
| 31 |
|
|
@@ -77,19 +79,229 @@ test_sample = [
|
|
| 77 |
{
|
| 78 |
"question": "Harold tosses a nickel four times. What is the probability that he gets at least as many heads as tails?",
|
| 79 |
"gold_answer": "\\frac{11}{16}",
|
| 80 |
-
"llm_response": "Alright, I have this probability problem to solve
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
"gold_judgment": "A"
|
| 82 |
},
|
| 83 |
{
|
| 84 |
-
"question": "Factor completely over the set of polynomials with integer coefficients
|
|
|
|
| 85 |
"gold_answer": "(x^2 + 1)(x^2 - 4x + 13)",
|
| 86 |
-
"llm_response": "To factor the polynomial $x^4 - 4x^3 + 14x^2 - 4x + 13$ completely over the set of polynomials with integer coefficients, we will follow these steps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
"gold_judgment": "B",
|
| 88 |
},
|
| 89 |
{
|
| 90 |
-
"question": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
"gold_answer": "['C']",
|
| 92 |
-
"llm_response": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
"gold_judgment": "C"
|
| 94 |
}
|
| 95 |
]
|
|
@@ -272,7 +484,6 @@ for sample in test_sample:
|
|
| 272 |
|
| 273 |
CompassVerifier performance (F1 score w/o COT) on our new released [VerifierBench](https://huggingface.co/OpenCompass/VerifierBench):
|
| 274 |
|
| 275 |
-
|
| 276 |
<p align="center">
|
| 277 |
<table>
|
| 278 |
<thead>
|
|
@@ -397,7 +608,7 @@ CompassVerifier performance (F1 score w/o COT) on our new released [VerifierBen
|
|
| 397 |
<td style="text-align: right;">67.1</td>
|
| 398 |
</tr>
|
| 399 |
<tr>
|
| 400 |
-
<td colspan="6" style="text-align: center;"><strong><em>CompassVerifier
|
| 401 |
</tr>
|
| 402 |
<tr>
|
| 403 |
<td style="text-align: left;">CompassVerifier-3B</td>
|
|
@@ -505,7 +716,8 @@ We also test the performance of CompassVerifier on [VerifyBench](https://arxiv.o
|
|
| 505 |
<td style="text-align: right;">-</td>
|
| 506 |
</tr>
|
| 507 |
<tr>
|
| 508 |
-
|
|
|
|
| 509 |
</tr>
|
| 510 |
<tr>
|
| 511 |
<td style="text-align: left;">CompassVerifier-3B</td>
|
|
@@ -610,9 +822,9 @@ To validate the efficacy of CompassVerifier as a reward model in reinforcement l
|
|
| 610 |
|
| 611 |
## ✏️ Citation
|
| 612 |
```
|
| 613 |
-
@article{
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
}
|
| 618 |
-
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
base_model:
|
| 3 |
- Qwen/Qwen2.5-32B-Instruct
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
library_name: transformers
|
| 6 |
+
pipeline_tag: text-classification
|
| 7 |
---
|
| 8 |
|
| 9 |
<h1 align="center">
|
| 10 |
+
CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward
|
| 11 |
</h1>
|
| 12 |
|
| 13 |
<div align="center" style="line-height: 1;">
|
|
|
|
| 17 |
<a href="https://open-compass.github.io/CompassVerifier" target="_blank" style="margin: 2px;">
|
| 18 |
<img alt="CompassVerifier Homepage" src="https://img.shields.io/badge/CompassVerifier-Website-orange?color=ff6b35&logo=web&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 19 |
</a>
|
| 20 |
+
<a href="httpshuggingface.co/papers/2508.03686" target="_blank" style="margin: 2px;">
|
| 21 |
<img alt="Technical Report" src="https://img.shields.io/badge/Paper-Report-brightgreen?logo=arxiv&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 22 |
</a>
|
| 23 |
<a href="https://huggingface.co/collections/opencompass/compassverifier-686e5a25e8672e603b17c666" target="_blank" style="margin: 2px;">
|
|
|
|
| 26 |
<a href="https://huggingface.co/datasets/opencompass/VerifierBench" target="_blank" style="margin: 2px;">
|
| 27 |
<img alt="Hugging Face Dataset" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Dataset-ff9800?color=ff9800&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 28 |
</a>
|
| 29 |
+
<a href="https://www.apache.org/licenses/LICENSE-2.0" style="margin: 2px;">
|
| 30 |
+
<img alt="License - Apache 2.0" src="https://img.shields.io/badge/License-Apache%202.0-blue.svg?color=blue&logo=apache&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 31 |
</a>
|
| 32 |
</div>
|
| 33 |
|
|
|
|
| 79 |
{
|
| 80 |
"question": "Harold tosses a nickel four times. What is the probability that he gets at least as many heads as tails?",
|
| 81 |
"gold_answer": "\\frac{11}{16}",
|
| 82 |
+
"llm_response": "Alright, I have this probability problem to solve:
|
| 83 |
+
|
| 84 |
+
**Problem:** Harold tosses a nickel four times. What is the probability that he gets at least as many heads as tails?
|
| 85 |
+
|
| 86 |
+
First, I need to understand what's being asked. Harold is tossing a nickel (which I assume is a fair coin) four times. I need to find the probability that the number of heads is at least as many as the number of tails.
|
| 87 |
+
|
| 88 |
+
### Understanding the Problem
|
| 89 |
+
|
| 90 |
+
- **Total number of tosses (n):** 4
|
| 91 |
+
- **Coin:** Fair, so probability of heads (H) = probability of tails (T) = 0.5
|
| 92 |
+
- **Desired outcome:** Number of heads ≥ number of tails
|
| 93 |
+
|
| 94 |
+
Since there are four tosses, the number of heads can range from 0 to 4. The number of tails will then be 4 minus the number of heads.
|
| 95 |
+
|
| 96 |
+
So, the possible number of heads (k) and corresponding number of tails (4 - k) are:
|
| 97 |
+
|
| 98 |
+
- k = 0: Tails = 4
|
| 99 |
+
- k = 1: Tails = 3
|
| 100 |
+
- k = 2: Tails = 2
|
| 101 |
+
- k = 3: Tails = 1
|
| 102 |
+
- k = 4: Tails = 0
|
| 103 |
+
|
| 104 |
+
We need the number of heads to be at least as many as the number of tails, i.e., k ≥ 4 - k.
|
| 105 |
+
|
| 106 |
+
Let's solve the inequality:
|
| 107 |
+
|
| 108 |
+
k ≥ 4 - k
|
| 109 |
+
k + k ≥ 4
|
| 110 |
+
2k ≥ 4
|
| 111 |
+
k ≥ 2
|
| 112 |
+
|
| 113 |
+
So, the number of heads must be 2, 3, or 4.
|
| 114 |
+
|
| 115 |
+
### Calculating the Probabilities
|
| 116 |
+
|
| 117 |
+
To find the probability of getting at least as many heads as tails, I need to calculate the probabilities for k = 2, 3, and 4 and then sum them up.
|
| 118 |
+
|
| 119 |
+
The probability of getting exactly k heads in n tosses of a fair coin is given by the binomial probability formula:
|
| 120 |
+
|
| 121 |
+
P(k) = C(n, k) * (0.5)^n
|
| 122 |
+
|
| 123 |
+
Where:
|
| 124 |
+
- C(n, k) is the number of combinations of n items taken k at a time.
|
| 125 |
+
- (0.5)^n is the probability of any specific sequence of n tosses.
|
| 126 |
+
|
| 127 |
+
Since the coin is fair, (0.5)^n will be the same for all k, so we can factor that out when summing the probabilities.
|
| 128 |
+
|
| 129 |
+
But to simplify, I'll calculate each probability separately.
|
| 130 |
+
|
| 131 |
+
#### 1. Probability of getting exactly 2 heads (k = 2)
|
| 132 |
+
|
| 133 |
+
C(4, 2) = 6
|
| 134 |
+
P(2) = 6 * (0.5)^4 = 6 * 0.0625 = 0.375
|
| 135 |
+
|
| 136 |
+
#### 2. Probability of getting exactly 3 heads (k = 3)
|
| 137 |
+
|
| 138 |
+
C(4, 3) = 4
|
| 139 |
+
P(3) = 4 * (0.5)^4 = 4 * 0.0625 = 0.25
|
| 140 |
+
|
| 141 |
+
#### 3. Probability of getting exactly 4 heads (k = 4)
|
| 142 |
+
|
| 143 |
+
C(4, 4) = 1
|
| 144 |
+
P(4) = 1 * (0.5)^4 = 1 * 0.0625 = 0.0625
|
| 145 |
+
|
| 146 |
+
### Summing the Probabilities
|
| 147 |
+
|
| 148 |
+
Now, I'll sum the probabilities for k = 2, 3, and 4:
|
| 149 |
+
|
| 150 |
+
P(at least as many heads as tails) = P(2) + P(3) + P(4)
|
| 151 |
+
= 0.375 + 0.25 + 0.0625
|
| 152 |
+
= 0.6875
|
| 153 |
+
|
| 154 |
+
### Verifying the Calculation
|
| 155 |
+
|
| 156 |
+
To ensure I didn't make a mistake, I'll double-check the calculations:
|
| 157 |
+
|
| 158 |
+
- **C(4, 2) = 6** ✔️
|
| 159 |
+
- **C(4, 3) = 4** ✔️
|
| 160 |
+
- **C(4, 4) = 1** ✔️
|
| 161 |
+
- **(0.5)^4 = 0.0625** ✔️
|
| 162 |
+
- **0.375 + 0.25 + 0.0625 = 0.6875** ✔️
|
| 163 |
+
|
| 164 |
+
Everything seems to add up correctly.
|
| 165 |
+
|
| 166 |
+
### Final Answer
|
| 167 |
+
|
| 168 |
+
The probability that Harold gets at least as many heads as tails when tossing a nickel four times is:
|
| 169 |
+
|
| 170 |
+
\\boxed{0.6875}",
|
| 171 |
"gold_judgment": "A"
|
| 172 |
},
|
| 173 |
{
|
| 174 |
+
"question": "Factor completely over the set of polynomials with integer coefficients:
|
| 175 |
+
\\[x^4 - 4x^3 + 14x^2 - 4x + 13.\\]",
|
| 176 |
"gold_answer": "(x^2 + 1)(x^2 - 4x + 13)",
|
| 177 |
+
"llm_response": "To factor the polynomial $x^4 - 4x^3 + 14x^2 - 4x + 13$ completely over the set of polynomials with integer coefficients, we will follow these steps:
|
| 178 |
+
|
| 179 |
+
1. **Check for possible rational roots**: Use the Rational Root Theorem, which states that any rational root, expressed as a fraction $\\frac{p}{q}$, must have $p$ as a factor of the constant term (13) and $q$ as a factor of the leading coefficient (1). The possible rational roots are $\\pm1, \\pm13$.
|
| 180 |
+
|
| 181 |
+
2. **Test the possible rational roots**: Substitute each possible rational root into the polynomial to check if it equals zero.
|
| 182 |
+
|
| 183 |
+
Let's start by testing $x = 1$:
|
| 184 |
+
$$
|
| 185 |
+
1^4 - 4 \\cdot 1^3 + 14 \\cdot 1^2 - 4 \\cdot 1 + 13 = 1 - 4 + 14 - 4 + 13 = 20 \
|
| 186 |
+
eq 0
|
| 187 |
+
$$
|
| 188 |
+
So, $x = 1$ is not a root.
|
| 189 |
+
|
| 190 |
+
Next, test $x = -1$:
|
| 191 |
+
$$
|
| 192 |
+
(-1)^4 - 4 \\cdot (-1)^3 + 14 \\cdot (-1)^2 - 4 \\cdot (-1) + 13 = 1 + 4 + 14 + 4 + 13 = 36 \
|
| 193 |
+
eq 0
|
| 194 |
+
$$
|
| 195 |
+
So, $x = -1$ is not a root.
|
| 196 |
+
|
| 197 |
+
Next, test $x = 13$:
|
| 198 |
+
$$
|
| 199 |
+
13^4 - 4 \\cdot 13^3 + 14 \\cdot 13^2 - 4 \\cdot 13 + 13
|
| 200 |
+
$$
|
| 201 |
+
This value is extremely large and clearly not zero.
|
| 202 |
+
|
| 203 |
+
Next, test $x = -13$:
|
| 204 |
+
$$
|
| 205 |
+
(-13)^4 - 4 \\cdot (-13)^3 + 14 \\cdot (-13)^2 - 4 \\cdot (-13) + 13
|
| 206 |
+
$$
|
| 207 |
+
This value is also extremely large and clearly not zero.
|
| 208 |
+
|
| 209 |
+
Since none of the possible rational roots are actual roots, we proceed to other methods.
|
| 210 |
+
|
| 211 |
+
3. **Grouping and factoring by grouping**: This method is not directly applicable here since the polynomial is a quartic and does not factor neatly into quadratic pairs.
|
| 212 |
+
|
| 213 |
+
4. **Using substitution or known identities**: Sometimes, quartic polynomials can be transformed into quadratic polynomials using substitutions or identities. However, this polynomial does not appear to fit neatly into such categories.
|
| 214 |
+
|
| 215 |
+
5. **Numerical or graphical methods**: For polynomials that do not factor easily, numerical methods or graphing can be used to approximate roots. However, since we are looking for integer coefficients, we need exact factors.
|
| 216 |
+
|
| 217 |
+
Given the complexity and the results from our initial checks, we conclude that the polynomial $x^4 - 4x^3 + 14x^2 - 4x + 13$ does not factor further over the set of polynomials with integer coefficients.
|
| 218 |
+
|
| 219 |
+
Thus, the final answer is:
|
| 220 |
+
$$
|
| 221 |
+
\\boxed{x^4 - 4x^3 + 14x^2 - 4x + 13}
|
| 222 |
+
$$",
|
| 223 |
"gold_judgment": "B",
|
| 224 |
},
|
| 225 |
{
|
| 226 |
+
"question": "请你做一道数学选择题
|
| 227 |
+
请你一步一步思考并将思考过程写在【解析】和<eoe>之间。你将从A,B,C,D中选出正确的答案,并写在【答案】和<eoa>之间。
|
| 228 |
+
例如:【答案】: A <eoa>
|
| 229 |
+
完整的题目回答的格式如下:
|
| 230 |
+
【解析】 ... <eoe>
|
| 231 |
+
【答案】 ... <eoa>
|
| 232 |
+
请你严格按照上述格式作答。
|
| 233 |
+
题目如下:8. (5 分) 设 $\\alpha \\in\\left(0, \\frac{\\pi}{2}\\right), \\beta \\in\\left(0, \\frac{\\pi}{2}\\right)$, 且 $\\tan \\alpha=\\frac{1+\\sin \\beta}{\\cos \\beta}$, 则()
|
| 234 |
+
A. $3 \\alpha-\\beta=\\frac{\\pi}{2}$
|
| 235 |
+
B. $3 \\alpha+\\beta=\\frac{\\pi}{2}$
|
| 236 |
+
C. $2 \\alpha-\\beta=\\frac{\\pi}{2}$
|
| 237 |
+
D. $2 \\alpha+\\beta=\\frac{\\pi}{2}$
|
| 238 |
+
|
| 239 |
+
",
|
| 240 |
"gold_answer": "['C']",
|
| 241 |
+
"llm_response": "【解析】
|
| 242 |
+
首先,我们从给定的条件 $\\tan \\alpha = \\frac{1 + \\sin \\beta}{\\cos \\beta}$ 开始分析。
|
| 243 |
+
|
| 244 |
+
1. 使用三角恒等式,我们可以将 $\\frac{1 + \\sin \\beta}{\\cos \\beta}$ 进行分解:
|
| 245 |
+
\\[
|
| 246 |
+
\\frac{1 + \\sin \\beta}{\\cos \\beta} = \\frac{1}{\\cos \\beta} + \\frac{\\sin \\beta}{\\cos \\beta} = \\sec \\beta + \\tan \\beta
|
| 247 |
+
\\]
|
| 248 |
+
因此,$\\tan \\alpha = \\sec \\beta + \\tan \\beta$。
|
| 249 |
+
|
| 250 |
+
2. 我们知道 $\\sec \\beta = \\frac{1}{\\cos \\beta}$,所以可以将上式改写为:
|
| 251 |
+
\\[
|
| 252 |
+
\\tan \\alpha = \\frac{1}{\\cos \\beta} + \\frac{\\sin \\beta}{\\cos \\beta} = \\frac{1 + \\sin \\beta}{\\cos \\beta}
|
| 253 |
+
\\]
|
| 254 |
+
这与原条件一致。
|
| 255 |
+
|
| 256 |
+
3. 接下来,我们需要验证选项中的关系。我们从选项 D 开始验证:$2 \\alpha + \\beta = \\frac{\\pi}{2}$。
|
| 257 |
+
|
| 258 |
+
4. 如果 $2 \\alpha + \\beta = \\frac{\\pi}{2}$,则 $\\beta = \\frac{\\pi}{2} - 2 \\alpha$。
|
| 259 |
+
|
| 260 |
+
5. 将 $\\beta = \\frac{\\pi}{2} - 2 \\alpha$ 代入原条件 $\\tan \\alpha = \\frac{1 + \\sin \\beta}{\\cos \\beta}$ 中:
|
| 261 |
+
\\[
|
| 262 |
+
\\sin \\beta = \\sin \\left( \\frac{\\pi}{2} - 2 \\alpha \\right) = \\cos 2 \\alpha
|
| 263 |
+
\\]
|
| 264 |
+
\\[
|
| 265 |
+
\\cos \\beta = \\cos \\left( \\frac{\\pi}{2} - 2 \\alpha \\right) = \\sin 2 \\alpha
|
| 266 |
+
\\]
|
| 267 |
+
|
| 268 |
+
6. 代入后得到:
|
| 269 |
+
\\[
|
| 270 |
+
\\tan \\alpha = \\frac{1 + \\cos 2 \\alpha}{\\sin 2 \\alpha}
|
| 271 |
+
\\]
|
| 272 |
+
|
| 273 |
+
7. 使用双角公式 $\\cos 2 \\alpha = 2 \\cos^2 \\alpha - 1$ 和 $\\sin 2 \\alpha = 2 \\sin \\alpha \\cos \\alpha$,我们得到:
|
| 274 |
+
\\[
|
| 275 |
+
\\tan \\alpha = \\frac{1 + 2 \\cos^2 \\alpha - 1}{2 \\sin \\alpha \\cos \\alpha} = \\frac{2 \\cos^2 \\alpha}{2 \\sin \\alpha \\cos \\alpha} = \\frac{\\cos \\alpha}{\\sin \\alpha} = \\cot \\alpha
|
| 276 |
+
\\]
|
| 277 |
+
|
| 278 |
+
8. 由于 $\\tan \\alpha = \\cot \\alpha$,这意味着 $\\alpha = \\frac{\\pi}{4}$。
|
| 279 |
+
|
| 280 |
+
9. 代入 $\\alpha = \\frac{\\pi}{4}$ 回到 $\\beta = \\frac{\\pi}{2} - 2 \\alpha$,我们得到:
|
| 281 |
+
\\[
|
| 282 |
+
\\beta = \\frac{\\pi}{2} - 2 \\cdot \\frac{\\pi}{4} = \\frac{\\pi}{2} - \\frac{\\pi}{2} = 0
|
| 283 |
+
\\]
|
| 284 |
+
|
| 285 |
+
10. 但是 $\\beta$ 必须在 $(0, \\frac{\\pi}{2})$ 之间,因此 $\\alpha = \\frac{\\pi}{4}$ 不成立。
|
| 286 |
+
|
| 287 |
+
11. 重新检查选项,发现选项 C 也可能是正确的。验证选项 C:$2 \\alpha - \\beta = \\frac{\\pi}{2}$。
|
| 288 |
+
|
| 289 |
+
12. 如果 $2 \\alpha - \\beta = \\frac{\\pi}{2}$,则 $\\beta = 2 \\alpha - \\frac{\\pi}{2}$。
|
| 290 |
+
|
| 291 |
+
13. 将 $\\beta = 2 \\alpha - \\frac{\\pi}{2}$ 代入原条件 $\\tan \\alpha = \\frac{1 + \\sin \\beta}{\\cos \\beta}$ 中:
|
| 292 |
+
\\[
|
| 293 |
+
\\sin \\beta = \\sin \\left( 2 \\alpha - \\frac{\\pi}{2} \\right) = -\\cos 2 \\alpha
|
| 294 |
+
\\]
|
| 295 |
+
\\[
|
| 296 |
+
\\cos \\beta = \\cos \\left( 2 \\alpha - \\frac{\\pi}{2} \\right) = \\sin 2 \\alpha
|
| 297 |
+
\\]
|
| 298 |
+
|
| 299 |
+
14. 代入后得到:
|
| 300 |
+
\\[
|
| 301 |
+
\\tan \\alpha = \\frac{1 - \\cos 2 \\alpha}{\\sin 2 \\alpha}
|
| 302 |
+
\\]
|
| 303 |
+
|
| 304 |
+
15. 使用双角公式 $\\cos 2 \\alpha =",
|
| 305 |
"gold_judgment": "C"
|
| 306 |
}
|
| 307 |
]
|
|
|
|
| 484 |
|
| 485 |
CompassVerifier performance (F1 score w/o COT) on our new released [VerifierBench](https://huggingface.co/OpenCompass/VerifierBench):
|
| 486 |
|
|
|
|
| 487 |
<p align="center">
|
| 488 |
<table>
|
| 489 |
<thead>
|
|
|
|
| 608 |
<td style="text-align: right;">67.1</td>
|
| 609 |
</tr>
|
| 610 |
<tr>
|
| 611 |
+
<td colspan="6" style="text-align: center;"><strong><em>CompassVerifier</em></strong></td>
|
| 612 |
</tr>
|
| 613 |
<tr>
|
| 614 |
<td style="text-align: left;">CompassVerifier-3B</td>
|
|
|
|
| 716 |
<td style="text-align: right;">-</td>
|
| 717 |
</tr>
|
| 718 |
<tr>
|
| 719 |
+
<tr>
|
| 720 |
+
<td colspan="5" style="text-align: center;"><strong><em>CompassVerifier</em></strong></td>
|
| 721 |
</tr>
|
| 722 |
<tr>
|
| 723 |
<td style="text-align: left;">CompassVerifier-3B</td>
|
|
|
|
| 822 |
|
| 823 |
## ✏️ Citation
|
| 824 |
```
|
| 825 |
+
@article{liu2025compassverifier,
|
| 826 |
+
title={CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward},
|
| 827 |
+
author={Liu, Shudong and Liu, Hongwei and Liu, Junnan and Xiao, Linchen and Gao, Songyang and Lyu, Chengqi and Gu, Yuzhe and Zhang, Wenwei and Wong, Derek F and Zhang, Songyang and Chen, Kai},
|
| 828 |
+
journal={arXiv preprint arXiv:2508.03686},
|
| 829 |
+
year={2025}
|
| 830 |
+
}
|