whisper-large-v3-turbo-polyglot-lion

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4785
  • Wer: 24.5798
  • Cer: 11.1678

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 61875
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.4088 0.0162 1000 0.4994 34.7783 17.1210
0.3439 0.0323 2000 0.4525 41.2640 20.8228
0.418 0.0485 3000 0.4299 42.2343 20.5350
0.2897 0.0646 4000 0.4211 35.2814 15.9274
0.2222 0.0808 5000 0.4225 29.3957 13.0202
0.2104 0.0970 6000 0.4108 29.9707 13.1356
0.1934 0.1131 7000 0.4154 32.1049 15.2465
0.3047 0.1293 8000 0.3850 30.6065 14.1824
0.2644 0.1455 9000 0.3838 28.8179 13.2065
0.1836 0.1616 10000 0.3997 31.4719 15.0610
0.185 0.1778 11000 0.4163 29.4316 14.4171
0.1494 0.1939 12000 0.3826 29.0694 14.2108
0.1277 0.2101 13000 0.4084 28.4225 12.8984
0.117 0.2263 14000 0.3981 27.8613 12.4497
0.242 0.2424 15000 0.4118 26.9352 12.2379
0.1699 0.2586 16000 0.3818 26.1114 11.1309
0.1191 0.2747 17000 0.3833 27.8088 13.2176
0.1487 0.2909 18000 0.3916 26.7970 12.0083
0.1004 0.3071 19000 0.4037 31.1954 14.7147
0.0841 0.3232 20000 0.4048 26.0008 11.1771
0.0875 0.3394 21000 0.3925 27.0292 12.0558
0.0727 0.3556 22000 0.4144 26.8716 12.3126
0.1333 0.3717 23000 0.4026 25.5557 11.5201
0.091 0.3879 24000 0.4064 26.7693 12.3877
0.0908 0.4040 25000 0.4009 26.4790 11.8843
0.0804 1.0162 26000 0.4156 26.2385 11.9548
0.054 1.0323 27000 0.4205 26.0229 11.6793
0.1282 1.0485 28000 0.4019 26.2441 11.9102
0.0726 1.0646 29000 0.4040 26.1722 12.1284
0.0496 1.0808 30000 0.4223 25.1825 11.1750
0.0531 1.0970 31000 0.4093 25.9068 11.8168
0.0443 1.1131 32000 0.4364 26.1418 12.4255
0.0937 1.1293 33000 0.4330 25.5861 11.5647
0.0703 1.1455 34000 0.4180 26.5730 12.3618
0.04 1.1616 35000 0.4377 26.0727 12.0728
0.0536 1.1778 36000 0.4444 25.5170 12.4790
0.0367 1.1939 37000 0.4252 24.5881 11.6980
0.0346 1.2101 38000 0.4296 24.2812 10.5383
0.0336 1.2263 39000 0.4301 26.1694 12.6560
0.0948 1.2424 40000 0.4432 25.8377 11.2794
0.0411 1.2586 41000 0.4475 24.8397 11.8024
0.0251 1.2747 42000 0.4428 25.3262 12.5354
0.0432 1.2909 43000 0.4276 25.4202 12.2324
0.0288 1.3071 44000 0.4481 25.2571 12.6305
0.0216 1.3232 45000 0.4545 24.9392 11.7502
0.0242 1.3394 46000 0.4440 25.4755 13.1454
0.0184 1.3556 47000 0.4589 24.1181 10.6843
0.0403 1.3717 48000 0.4527 24.2149 10.6741
0.0191 1.3879 49000 0.4652 25.1880 11.4891
0.02 1.4040 50000 0.4579 23.7394 10.4636
0.0195 2.0162 51000 0.4696 24.3172 10.9025
0.0101 2.0323 52000 0.4759 24.6378 11.0961
0.0377 2.0485 53000 0.4617 25.7658 12.6250
0.0212 2.0646 54000 0.4592 24.1098 10.9182
0.0114 2.0808 55000 0.4715 23.8859 10.6160
0.0139 2.0970 56000 0.4606 24.3476 11.2973
0.0101 2.1131 57000 0.4779 24.0379 10.4254
0.0266 2.1293 58000 0.4752 23.9191 10.7200
0.0152 2.1455 59000 0.4749 24.3310 11.1215
0.0065 2.1616 60000 0.4764 24.1679 10.6572
0.0116 2.1778 61000 0.4785 24.5798 11.1678

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.9.1+cu128
  • Datasets 3.5.0
  • Tokenizers 0.22.1
Downloads last month
518
Safetensors
Model size
0.8B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for quyanh/whisper-large-v3-turbo-polyglot-lion

Finetuned
(422)
this model

Evaluation results