SmolVLM2-2.2B-Instruct GGUF
GGUF quantizations of HuggingFaceTB/SmolVLM2-2.2B-Instruct for use with llama.cpp and Ollama.
Model Description
SmolVLM2 is a compact 2.2B parameter vision-language model from HuggingFace with video understanding capabilities. It's designed to be fast and efficient while maintaining strong performance on vision-language tasks.
Key Features
- Compact & Fast - Only 2.2B parameters, runs efficiently on consumer hardware
- Vision & Video - Understands both images and video frames
- Instruction-tuned - Optimized for following user instructions
- Apache 2.0 - Fully open source
Available Quantizations
| Filename | Quant | Size | Description |
|---|---|---|---|
| SmolVLM2-2.2B-Instruct-Q4_K_M.gguf | Q4_K_M | 1.0 GB | Best balance of quality and speed (recommended) |
| SmolVLM2-2.2B-Instruct-Q8_0.gguf | Q8_0 | 1.8 GB | Higher quality |
| SmolVLM2-2.2B-Instruct.gguf | F16 | 3.4 GB | Full precision |
Usage
With Ollama
# Pull and run (Q4_K_M by default)
ollama run richardyoung/smolvlm2-2.2b-instruct
# Or specific quantization
ollama run richardyoung/smolvlm2-2.2b-instruct:q8_0
ollama run richardyoung/smolvlm2-2.2b-instruct:f16
With llama.cpp
# Download a quantization
wget https://huggingface.co/richardyoung/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct-Q4_K_M.gguf
# Run with llama.cpp
./llama-cli -m SmolVLM2-2.2B-Instruct-Q4_K_M.gguf -p "Describe this image:" --image your_image.jpg
Technical Requirements
- Minimum: 4GB RAM, any modern CPU
- Recommended: 8GB RAM or Apple Silicon Mac
Chat Template
SmolVLM2 uses the ChatML format:
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
{assistant_response}<|im_end|>
Links
- Original Model: HuggingFaceTB/SmolVLM2-2.2B-Instruct
- Ollama: richardyoung/smolvlm2-2.2b-instruct
Credits
- Original Model: HuggingFace
- Quantization: Richard Young (deepneuro.ai)
License
Apache 2.0
- Downloads last month
- 25
Hardware compatibility
Log In
to view the estimation
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for richardyoung/SmolVLM2-2.2B-Instruct-GGUF
Base model
HuggingFaceTB/SmolLM2-1.7B
Quantized
HuggingFaceTB/SmolLM2-1.7B-Instruct
Quantized
HuggingFaceTB/SmolVLM-Instruct
Finetuned
HuggingFaceTB/SmolVLM2-2.2B-Instruct