File size: 7,118 Bytes
bf5bf84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from diffusers import QwenImageLayeredPipeline
import torch
from PIL import Image
from pptx import Presentation
import os
import gradio as gr
import uuid
import numpy as np
import random
import spaces
import tempfile


LOG_DIR = "/tmp/local"
MAX_SEED = np.iinfo(np.int32).max

pipeline = QwenImageLayeredPipeline.from_pretrained("Qwen/Qwen-Image-Layered")
pipeline = pipeline.to("cuda", torch.bfloat16)
pipeline.set_progress_bar_config(disable=None)

def ensure_dirname(path: str):
    if path and not os.path.exists(path):
        os.makedirs(path, exist_ok=True)

def random_str(length=8):
    return uuid.uuid4().hex[:length]

def imagelist_to_pptx(img_files):
    with Image.open(img_files[0]) as img:
        img_width_px, img_height_px = img.size

    def px_to_emu(px, dpi=96):
        inch = px / dpi
        emu = inch * 914400
        return int(emu)

    prs = Presentation()
    prs.slide_width = px_to_emu(img_width_px)
    prs.slide_height = px_to_emu(img_height_px)

    slide = prs.slides.add_slide(prs.slide_layouts[6])

    left = top = 0
    for img_path in img_files:
        slide.shapes.add_picture(img_path, left, top, width=px_to_emu(img_width_px), height=px_to_emu(img_height_px))

    with tempfile.NamedTemporaryFile(suffix=".pptx", delete=False) as tmp:
        prs.save(tmp.name)
        return tmp.name

def export_gallery(images):
    # images: list of image file paths
    images = [e[0] for e in images]
    pptx_path = imagelist_to_pptx(images)
    return pptx_path

@spaces.GPU(duration=300)
def infer(input_image,
          seed=777,
          randomize_seed=False,
          prompt=None,
          neg_prompt=" ",
          true_guidance_scale=4.0,
          num_inference_steps=50,
          layer=4,
          cfg_norm=True,
          use_en_prompt=True):
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    if isinstance(input_image, list):
        input_image = input_image[0]
        
    if isinstance(input_image, str):
        pil_image = Image.open(input_image).convert("RGB").convert("RGBA")
    elif isinstance(input_image, Image.Image):
        pil_image = input_image.convert("RGB").convert("RGBA")
    elif isinstance(input_image, np.ndarray):
        pil_image = Image.fromarray(input_image).convert("RGB").convert("RGBA")
    else:
        raise ValueError("Unsupported input_image type: %s" % type(input_image))
    
    inputs = {
        "image": pil_image,
        "generator": torch.Generator(device='cuda').manual_seed(seed),
        "true_cfg_scale": true_guidance_scale,
        "prompt": prompt,
        "negative_prompt": neg_prompt,
        "num_inference_steps": num_inference_steps,
        "num_images_per_prompt": 1,
        "layers": layer,
        "resolution": 640,      # Using different bucket (640, 1024) to determine the resolution. For this version, 640 is recommended
        "cfg_normalize": cfg_norm,  # Whether enable cfg normalization.
        "use_en_prompt": use_en_prompt, 
    }
    print(inputs)
    with torch.inference_mode():
        output = pipeline(**inputs)
        output_images = output.images[0]
    
    output = []
    for i, image in enumerate(output_images):
        output.append(image)
    return output

ensure_dirname(LOG_DIR)
examples = [
            "assets/test_images/1.png",
            "assets/test_images/2.png",
            "assets/test_images/3.png",
            "assets/test_images/4.png",
            "assets/test_images/5.png",
            "assets/test_images/6.png",
            "assets/test_images/7.png",
            "assets/test_images/8.png",
            "assets/test_images/9.png",
            "assets/test_images/10.png",
            "assets/test_images/11.png",
            "assets/test_images/12.png",
            "assets/test_images/13.png",
            ]


with gr.Blocks() as demo:
    with gr.Column(elem_id="col-container"):
        gr.Image("assets/logo.png", width=600)
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", image_mode="RGBA")
                
            with gr.Column():
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)


                prompt = gr.Textbox(
                    label="Prompt (Optional)",
                    placeholder="Please enter the prompt to guide the decomposition (Optional)",
                    value="",
                    lines=2,
                )
                neg_prompt = gr.Textbox(
                    label="Negative Prompt (Optional)",
                    placeholder="Please enter the negative prompt",
                    value=" ",
                    lines=2,
                )
                
                with gr.Row():
                    true_guidance_scale = gr.Slider(
                        label="True guidance scale",
                        minimum=1.0,
                        maximum=10.0,
                        step=0.1,
                        value=4.0
                    )

                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=50,
                    )

                    layer = gr.Slider(
                        label="Layers",
                        minimum=2,
                        maximum=10,
                        step=1,
                        value=4,
                    )

                with gr.Row():
                    cfg_norm = gr.Checkbox(label="Whether enable CFG normalization", value=True)
                    use_en_prompt = gr.Checkbox(label="Automatic caption language if no prompt provided, True for EN, False for ZH", value=True)
                
                with gr.Row():
                    run_button = gr.Button("Decompose!", variant="primary")

        gallery = gr.Gallery(label="Layers", columns=4, rows=1, format="png")
        export_btn = gr.Button("Export as PPTX")
        export_file = gr.File(label="Download PPTX")
        export_btn.click(
            fn=export_gallery,
            inputs=gallery,
            outputs=export_file
        )

    gr.Examples(examples=examples,
                    inputs=[input_image], 
                    outputs=[gallery], 
                    fn=infer, 
                    examples_per_page=14,
                    cache_examples=False,
                    run_on_click=True
    )

    run_button.click(
        fn=infer,
        inputs=[
            input_image,
            seed,
            randomize_seed,
            prompt,
            neg_prompt,
            true_guidance_scale,
            num_inference_steps,
            layer,
            cfg_norm,
            use_en_prompt,
        ], 
        outputs=gallery,
    )

if __name__ == "__main__":
    demo.launch()