VetriVelRavi commited on
Commit
5e2c81b
Β·
verified Β·
1 Parent(s): cc76f1c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -16
app.py CHANGED
@@ -6,51 +6,59 @@ from PIL import Image
6
  import numpy as np
7
  import cv2
8
 
9
- # Load ControlNet (depth)
 
 
 
10
  controlnet = ControlNetModel.from_pretrained(
11
- "lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16
12
- )
13
 
14
- # Load SD pipeline with ControlNet and enable CUDA for faster generation
15
  pipe = StableDiffusionControlNetPipeline.from_pretrained(
16
  "runwayml/stable-diffusion-v1-5",
17
  controlnet=controlnet,
18
- torch_dtype=torch.float16
19
- ).to("cuda")
20
 
21
- # Depth model
22
- depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
23
  depth_processor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
24
 
25
  def generate(input_image, prompt):
 
26
  image = input_image.convert("RGB")
27
- inputs = depth_processor(images=image, return_tensors="pt").to("cuda")
 
 
28
 
29
  with torch.no_grad():
30
  outputs = depth_model(**inputs)
31
  depth = outputs.predicted_depth.squeeze().cpu().numpy()
32
 
 
33
  depth = cv2.normalize(depth, None, 0, 255, norm_type=cv2.NORM_MINMAX)
34
  depth_image = Image.fromarray(depth.astype(np.uint8))
35
 
 
36
  result = pipe(
37
  prompt=prompt,
38
  image=depth_image,
39
- height=512,
40
- width=768,
41
- num_inference_steps=5 # πŸ”₯ Faster generation
42
  ).images[0]
43
 
44
  return result
45
 
46
- # Interface
47
  gr.Interface(
48
  fn=generate,
49
  inputs=[
50
  gr.Image(type="pil", label="Upload Room Image"),
51
- gr.Textbox(label="Enter Interior Style Prompt"),
52
  ],
53
  outputs=gr.Image(type="pil", label="Generated Room"),
54
- title="πŸ›‹οΈ AI Interior Designer",
55
- description="Upload your room and get a styled redesign using ControlNet (Depth). Optimized for fast generation.",
56
  ).launch()
 
6
  import numpy as np
7
  import cv2
8
 
9
+ # Detect GPU or fallback to CPU
10
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
+
12
+ # Load ControlNet model (depth conditioning)
13
  controlnet = ControlNetModel.from_pretrained(
14
+ "lllyasviel/sd-controlnet-depth", torch_dtype=torch.float32
15
+ ).to(device)
16
 
17
+ # Load Stable Diffusion with ControlNet
18
  pipe = StableDiffusionControlNetPipeline.from_pretrained(
19
  "runwayml/stable-diffusion-v1-5",
20
  controlnet=controlnet,
21
+ torch_dtype=torch.float32
22
+ ).to(device)
23
 
24
+ # Load depth estimation model
25
+ depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
26
  depth_processor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
27
 
28
  def generate(input_image, prompt):
29
+ # Convert image to RGB
30
  image = input_image.convert("RGB")
31
+
32
+ # Prepare depth inputs
33
+ inputs = depth_processor(images=image, return_tensors="pt").to(device)
34
 
35
  with torch.no_grad():
36
  outputs = depth_model(**inputs)
37
  depth = outputs.predicted_depth.squeeze().cpu().numpy()
38
 
39
+ # Normalize to 0–255 and convert to grayscale PIL
40
  depth = cv2.normalize(depth, None, 0, 255, norm_type=cv2.NORM_MINMAX)
41
  depth_image = Image.fromarray(depth.astype(np.uint8))
42
 
43
+ # Run image generation
44
  result = pipe(
45
  prompt=prompt,
46
  image=depth_image,
47
+ height=512, # You can reduce this if slow
48
+ width=512,
49
+ num_inference_steps=10
50
  ).images[0]
51
 
52
  return result
53
 
54
+ # Gradio interface
55
  gr.Interface(
56
  fn=generate,
57
  inputs=[
58
  gr.Image(type="pil", label="Upload Room Image"),
59
+ gr.Textbox(label="Enter Interior Style Prompt", placeholder="e.g. modern Japanese living room"),
60
  ],
61
  outputs=gr.Image(type="pil", label="Generated Room"),
62
+ title="πŸ›‹οΈ AI Room Redesign (ControlNet + Depth)",
63
+ description="Upload a room image and get a redesigned version based on your style prompt using ControlNet Depth.",
64
  ).launch()