cv / README.md
omarkamali's picture
Upload all models and assets for cv (latest)
63c361e verified
metadata
language: cv
language_name: Chuvash
language_family: turkic_other
tags:
  - wikilangs
  - nlp
  - tokenizer
  - embeddings
  - n-gram
  - markov
  - wikipedia
  - feature-extraction
  - sentence-similarity
  - tokenization
  - n-grams
  - markov-chain
  - text-mining
  - fasttext
  - babelvec
  - vocabulous
  - vocabulary
  - monolingual
  - family-turkic_other
license: mit
library_name: wikilangs
pipeline_tag: text-generation
datasets:
  - omarkamali/wikipedia-monthly
dataset_info:
  name: wikipedia-monthly
  description: Monthly snapshots of Wikipedia articles across 300+ languages
metrics:
  - name: best_compression_ratio
    type: compression
    value: 3.778
  - name: best_isotropy
    type: isotropy
    value: 0.8326
  - name: vocabulary_size
    type: vocab
    value: 0
generated: 2026-01-03T00:00:00.000Z

Chuvash - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Chuvash Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

📋 Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.075x 3.08 0.2413% 246,622
16k 3.345x 3.35 0.2625% 226,699
32k 3.576x 3.58 0.2806% 212,069
64k 3.778x 🏆 3.78 0.2964% 200,734

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Вики: Вики Wiki Wiki WIKI (FM) Wiki wiki dollar Wiki Wiki Shuttle WikiWikiWeb Ви...

Vocab Tokens Count
8k ▁вики : ▁вики ▁wik i ▁wik i ▁wik i ▁( ... (+41 more) 51
16k ▁вики : ▁вики ▁wiki ▁wiki ▁wiki ▁( f m ) ... (+28 more) 38
32k ▁вики : ▁вики ▁wiki ▁wiki ▁wiki ▁( fm ) ▁wiki ... (+25 more) 35
64k ▁вики : ▁вики ▁wiki ▁wiki ▁wiki ▁( fm ) ▁wiki ... (+23 more) 33

Sample 2: Хро́мпик — ят е мар ят. Хромпик — калий Топоним Хромпик — çул Первоуральск (стан...

Vocab Tokens Count
8k ▁х ро ́м п ик ▁— ▁ят ▁е ▁мар ▁ят ... (+51 more) 61
16k ▁х ро ́м п ик ▁— ▁ят ▁е ▁мар ▁ят ... (+43 more) 53
32k ▁х ро ́м пик ▁— ▁ят ▁е ▁мар ▁ят . ... (+36 more) 46
64k ▁х ро ́м пик ▁— ▁ят ▁е ▁мар ▁ят . ... (+32 more) 42

Sample 3: Мушар — Республикин Куславкка ял. ял Коричев АССР Халах Вуламалли алфавитпа

Vocab Tokens Count
8k ▁му шар ▁— ▁республикин ▁куславкка ▁ял . ▁ял ▁кори чев ... (+4 more) 14
16k ▁му шар ▁— ▁республикин ▁куславкка ▁ял . ▁ял ▁кори чев ... (+4 more) 14
32k ▁му шар ▁— ▁республикин ▁куславкка ▁ял . ▁ял ▁коричев ▁асср ... (+3 more) 13
64k ▁му шар ▁— ▁республикин ▁куславкка ▁ял . ▁ял ▁коричев ▁асср ... (+3 more) 13

Key Findings

  • Best Compression: 64k achieves 3.778x compression
  • Lowest UNK Rate: 8k with 0.2413% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 9,473 13.21 71,211 26.6% 47.9%
2-gram Subword 532 🏆 9.06 7,908 52.7% 95.2%
3-gram Word 8,325 13.02 89,585 30.3% 52.2%
3-gram Subword 4,929 12.27 69,351 17.2% 56.3%
4-gram Word 14,593 13.83 169,630 26.4% 47.5%
4-gram Subword 26,364 14.69 378,926 10.1% 32.1%
5-gram Word 12,306 13.59 144,170 27.1% 49.1%
5-gram Subword 81,182 16.31 1,007,721 7.9% 24.5%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 шыв шыв 22,911
2 территоринчи юханшыв 14,353
3 территорипе юхать 13,579
4 юхса юханшыв 13,517
5 экологи министерстви 11,703

3-grams (Word):

Rank N-gram Count
1 рф экологи министерстви 11,700
2 территорин шыв геоинформаци 11,389
3 геоинформаци системин шыв 11,389
4 федераци агентстви рф 11,389
5 шыв федераци агентстви 11,389

4-grams (Word):

Rank N-gram Count
1 геоинформаци системин шыв шыв 11,389
2 рф территорин шыв геоинформаци 11,389
3 агентстви рф территорин шыв 11,389
4 федераци агентстви рф территорин 11,389
5 территорин шыв геоинформаци системин 11,389

5-grams (Word):

Rank N-gram Count
1 агентстви рф территорин шыв геоинформаци 11,389
2 федераци агентстви рф территорин шыв 11,389
3 шыв геоинформаци системин шыв шыв 11,389
4 территорин шыв геоинформаци системин шыв 11,389
5 шыв федераци агентстви рф территорин 11,389

2-grams (Subword):

Rank N-gram Count
1 . _ 465,426
2 а _ 402,164
3 и _ 363,006
4 — _ 346,175
5 _ — 343,660

3-grams (Subword):

Rank N-gram Count
1 _ — _ 342,728
2 ш ы в 149,577
3 ы в _ 121,922
4 _ ю х 94,718
5 т е р 86,508

4-grams (Subword):

Rank N-gram Count
1 ш ы в _ 121,828
2 _ ш ы в 85,484
3 _ ю х а 76,914
4 ю х а н 63,379
5 х а н ш 63,281

5-grams (Subword):

Rank N-gram Count
1 _ ш ы в _ 83,923
2 ю х а н ш 63,268
3 х а н ш ы 63,265
4 а н ш ы в 63,263
5 _ ю х а н 62,475

Key Findings

  • Best Perplexity: 2-gram (subword) with 532
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~25% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.7800 1.717 5.34 352,836 22.0%
1 Subword 0.6157 1.532 6.03 3,635 38.4%
2 Word 0.1829 1.135 1.40 1,869,675 81.7%
2 Subword 0.9040 1.871 6.19 21,903 9.6%
3 Word 0.0525 1.037 1.09 2,591,084 94.7%
3 Subword 0.8721 1.830 4.70 135,543 12.8%
4 Word 0.0223 🏆 1.016 1.04 2,792,400 97.8%
4 Subword 0.7095 1.635 3.14 636,890 29.1%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. шыв гидрологи бассейн шыв шыв геоинформаци системин шыв федераци агентстви рф территорин шыв геоинфо...
  2. юханшыв двина печора шыв федераци агентстви рф экологи министерстви республикин ао коми республики т...
  3. в цене чем предпочитают вспоминать и дефекты зрения м советская энциклопедия в унисон с любашей леро...

Context Size 2:

  1. шыв шыв тури обь иртыш шыв федераци агентстви рф территорин шыв геоинформаци системин шыв шыв тури о...
  2. территоринчи юханшыв рейн вестфали территорипе юхать юханшыв негус ях сулахай 13 км шыв шыв тури бас...
  3. территорипе юхать юханшыв мăн салым сулахай 220 км юхса юханшыв 12 км шыв шыв гидрологи бассейн том

Context Size 3:

  1. федераци агентстви рф территорин шыв геоинформаци системин шыв шыв гидрологи гт бассейн том гт 15 гт...
  2. шыв федераци агентстви рф территорин шыв геоинформаци системин шыв шыв гидрологи бассейн том 15 3 рф...
  3. шыв геоинформаци системин шыв шыв гидрологи гт бассейн том гт 11 гт 1 рф экологи министерстви респуб...

Context Size 4:

  1. шыв геоинформаци системин шыв шыв гидрологи гт бассейн том гт 03 гт 0 рф экологи министерстви ао рес...
  2. территорин шыв геоинформаци системин шыв шыв гидрологи бассейн том 15 3 рф экологи министерстви авто...
  3. геоинформаци системин шыв шыв гидрологи гт бассейн том гт 03 гт 0 рф экологи министерстви ао республ...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _—_фикулигинци_в
  2. а,_;_улслаки_пид
  3. и_каспалименияни

Context Size 2:

  1. ._—_торф_тыслана_
  2. а_медилостви_тута
  3. и_йышши_баллина_з

Context Size 3:

  1. _—_теминисем_астар
  2. шыв_—_мар_монтовол
  3. ыв_шыв._команицы:_

Context Size 4:

  1. шыв_шыв_—_венгрла._
  2. _шыв_федераци_агент
  3. _юханшыв_шыв_геоинф

Key Findings

  • Best Predictability: Context-4 (word) with 97.8% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (636,890 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 149,054
Total Tokens 3,895,916
Mean Frequency 26.14
Median Frequency 4
Frequency Std Dev 439.39

Most Common Words

Rank Word Frequency
1 шыв 84,160
2 юханшыв 53,731
3 в 45,242
4 и 41,204
5 с 37,543
6 тата 34,625
7 бассейн 28,455
8 км 25,026
9 м 24,932
10 рф 24,450

Least Common Words (from vocabulary)

Rank Word Frequency
1 дустлик 2
2 галляарал 2
3 зарбдар 2
4 джизакской 2
5 сардоба 2
6 баяут 2
7 хаваст 2
8 сырдарьинской 2
9 пайт 2
10 клинов 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 1.0393
R² (Goodness of Fit) 0.997747
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 30.0%
Top 1,000 56.1%
Top 5,000 72.5%
Top 10,000 79.0%

Key Findings

  • Zipf Compliance: R²=0.9977 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 30.0% of corpus
  • Long Tail: 139,054 words needed for remaining 21.0% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.8326 🏆 0.3463 N/A N/A
mono_64d 64 0.8301 0.2835 N/A N/A
mono_128d 128 0.7992 0.2278 N/A N/A
aligned_32d 32 0.8326 0.3575 0.0120 0.1340
aligned_64d 64 0.8301 0.2722 0.0400 0.2360
aligned_128d 128 0.7992 0.2219 0.0680 0.3000

Key Findings

  • Best Isotropy: mono_32d with 0.8326 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.2849. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 6.8% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap 1.001 High formulaic/idiomatic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples

Productive Suffixes

Suffix Examples
курска, никсона, подвига
-ен америкасен, слышен, судьясен
-не взводне, очерксене, болгарине
-ов резюков, коршунов, щенков
-ем сикекенсем, символсем, перуанецсем
-ий выступлений, парфентий, праславянский

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
олог 2.08x 173 contexts геолог, пологи, эколог
сейн 2.92x 24 contexts сейнер, хусейн, хасейн
ссей 2.92x 17 contexts ессей, эссей, рассей
огра 1.78x 95 contexts богра, ограды, ограда
рито 2.46x 26 contexts ритон, крито, приток
ншыв 2.79x 17 contexts юшаншыв, юханшыв, юханшыве
ерри 2.45x 22 contexts черри, ферри, дерри
орин 1.72x 74 contexts дорин, шорин, борин
аншы 2.79x 13 contexts юшаншыв, юханшыв, юханшыве
исте 1.81x 57 contexts листе, хистет, истерн
блик 2.25x 17 contexts облик, облика, коблик
нист 1.86x 30 contexts финист, пианист, капнист

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

No significant affix co-occurrences detected.

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
айсбергов айсберг-ов 4.5 айсберг
фахрутдинов фахрутдин-ов 4.5 фахрутдин
экономикине экономики-не 4.5 экономики
пурнӑҫланине пурнӑҫлани-не 4.5 пурнӑҫлани
ансамбльне ансамбль-не 4.5 ансамбль
хрустальне хрусталь-не 4.5 хрусталь
анатомине анатоми-не 4.5 анатоми
инженеров инженер-ов 4.5 инженер
багдасаров багдасар-ов 4.5 багдасар
фотографий фотограф-ий 4.5 фотограф
ассамблейине ассамблейи-не 4.5 ассамблейи
символикине символики-не 4.5 символики
бриллиантов бриллиант-ов 4.5 бриллиант
кинокритиков кинокритик-ов 4.5 кинокритик
наводнений наводн-ен-ий 3.0 наводн

6.6 Linguistic Interpretation

Automated Insight: The language Chuvash shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.

Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (3.78x)
N-gram 2-gram Lowest perplexity (532)
Markov Context-4 Highest predictability (97.8%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

R² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-03 23:50:11