EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling
Paper
โข
2502.09509
โข
Published
โข
8
Arxiv: https://arxiv.org/abs/2502.09509
EQ-VAE regularizes the latent space of pretrained autoencoders by enforcing equivariance under scaling and rotation transformations.
This model is a regularized version of SD-VAE. We finetune it with EQ-VAE regularization for 44 epochs on Imagenet with EMA weights.
from transformers import AutoencoderKL
model = AutoencoderKL.from_pretrained("zelaki/eq-vae-ema")
Reconstruction performance of eq-vae-ema on Imagenet Validation Set.
| Metric | Score |
|---|---|
| FID | 0.552 |
| PSNR | 26.158 |
| LPIPS | 0.133 |
| SSIM | 0.725 |