naykun's picture
Create app.py
bf5bf84 verified
raw
history blame
7.12 kB
from diffusers import QwenImageLayeredPipeline
import torch
from PIL import Image
from pptx import Presentation
import os
import gradio as gr
import uuid
import numpy as np
import random
import spaces
import tempfile
LOG_DIR = "/tmp/local"
MAX_SEED = np.iinfo(np.int32).max
pipeline = QwenImageLayeredPipeline.from_pretrained("Qwen/Qwen-Image-Layered")
pipeline = pipeline.to("cuda", torch.bfloat16)
pipeline.set_progress_bar_config(disable=None)
def ensure_dirname(path: str):
if path and not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def random_str(length=8):
return uuid.uuid4().hex[:length]
def imagelist_to_pptx(img_files):
with Image.open(img_files[0]) as img:
img_width_px, img_height_px = img.size
def px_to_emu(px, dpi=96):
inch = px / dpi
emu = inch * 914400
return int(emu)
prs = Presentation()
prs.slide_width = px_to_emu(img_width_px)
prs.slide_height = px_to_emu(img_height_px)
slide = prs.slides.add_slide(prs.slide_layouts[6])
left = top = 0
for img_path in img_files:
slide.shapes.add_picture(img_path, left, top, width=px_to_emu(img_width_px), height=px_to_emu(img_height_px))
with tempfile.NamedTemporaryFile(suffix=".pptx", delete=False) as tmp:
prs.save(tmp.name)
return tmp.name
def export_gallery(images):
# images: list of image file paths
images = [e[0] for e in images]
pptx_path = imagelist_to_pptx(images)
return pptx_path
@spaces.GPU(duration=300)
def infer(input_image,
seed=777,
randomize_seed=False,
prompt=None,
neg_prompt=" ",
true_guidance_scale=4.0,
num_inference_steps=50,
layer=4,
cfg_norm=True,
use_en_prompt=True):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if isinstance(input_image, list):
input_image = input_image[0]
if isinstance(input_image, str):
pil_image = Image.open(input_image).convert("RGB").convert("RGBA")
elif isinstance(input_image, Image.Image):
pil_image = input_image.convert("RGB").convert("RGBA")
elif isinstance(input_image, np.ndarray):
pil_image = Image.fromarray(input_image).convert("RGB").convert("RGBA")
else:
raise ValueError("Unsupported input_image type: %s" % type(input_image))
inputs = {
"image": pil_image,
"generator": torch.Generator(device='cuda').manual_seed(seed),
"true_cfg_scale": true_guidance_scale,
"prompt": prompt,
"negative_prompt": neg_prompt,
"num_inference_steps": num_inference_steps,
"num_images_per_prompt": 1,
"layers": layer,
"resolution": 640, # Using different bucket (640, 1024) to determine the resolution. For this version, 640 is recommended
"cfg_normalize": cfg_norm, # Whether enable cfg normalization.
"use_en_prompt": use_en_prompt,
}
print(inputs)
with torch.inference_mode():
output = pipeline(**inputs)
output_images = output.images[0]
output = []
for i, image in enumerate(output_images):
output.append(image)
return output
ensure_dirname(LOG_DIR)
examples = [
"assets/test_images/1.png",
"assets/test_images/2.png",
"assets/test_images/3.png",
"assets/test_images/4.png",
"assets/test_images/5.png",
"assets/test_images/6.png",
"assets/test_images/7.png",
"assets/test_images/8.png",
"assets/test_images/9.png",
"assets/test_images/10.png",
"assets/test_images/11.png",
"assets/test_images/12.png",
"assets/test_images/13.png",
]
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Image("assets/logo.png", width=600)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", image_mode="RGBA")
with gr.Column():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
prompt = gr.Textbox(
label="Prompt (Optional)",
placeholder="Please enter the prompt to guide the decomposition (Optional)",
value="",
lines=2,
)
neg_prompt = gr.Textbox(
label="Negative Prompt (Optional)",
placeholder="Please enter the negative prompt",
value=" ",
lines=2,
)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=4.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
layer = gr.Slider(
label="Layers",
minimum=2,
maximum=10,
step=1,
value=4,
)
with gr.Row():
cfg_norm = gr.Checkbox(label="Whether enable CFG normalization", value=True)
use_en_prompt = gr.Checkbox(label="Automatic caption language if no prompt provided, True for EN, False for ZH", value=True)
with gr.Row():
run_button = gr.Button("Decompose!", variant="primary")
gallery = gr.Gallery(label="Layers", columns=4, rows=1, format="png")
export_btn = gr.Button("Export as PPTX")
export_file = gr.File(label="Download PPTX")
export_btn.click(
fn=export_gallery,
inputs=gallery,
outputs=export_file
)
gr.Examples(examples=examples,
inputs=[input_image],
outputs=[gallery],
fn=infer,
examples_per_page=14,
cache_examples=False,
run_on_click=True
)
run_button.click(
fn=infer,
inputs=[
input_image,
seed,
randomize_seed,
prompt,
neg_prompt,
true_guidance_scale,
num_inference_steps,
layer,
cfg_norm,
use_en_prompt,
],
outputs=gallery,
)
if __name__ == "__main__":
demo.launch()